
UHECR INTERACTIONS AS THE ORIGIN OF VERY HIGH-ENERGY γ -rays From BL Lacs

Saikat Das^{*a*} · Nayantara Gupta^{*a*} · Soebur Razzaque^{*b*}

^{*a*} Astronomy & Astrophysics Group, Raman Research Institute, Bangalore 560080, India ^{*b*} Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

1ES 0229+200

1019

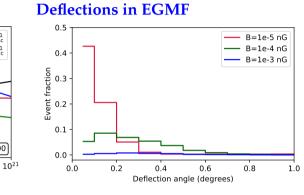
γγ absorption & Klein-Nishina effect reduces the VHE *γ*-ray flux. One-zone modeling provides the jet parameters *R*, *δ*, *B*, *Γ*, *E*_{*e*,max} 10^{-2} 10^{-5} $\frac{t_{pv}^{-1}}{t_{BH}^{-1}}$ $\frac{t_{BH}^{-1}}{t_{BH}^{-1}}$ 10^{-11} 10^{-14}

1013

Accln & loss rates

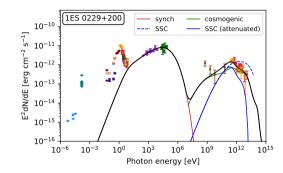
 10^{-17}

 10^{-20}


1011

• The escape rate is higher than the energy loss rate for protons inside the jet, and lower than the acceleration rate up to $E_{p,max} = 10^{19}$ eV

Proton Energy [eV]


1015

1017

• A random turbulent EGMF with $B_{\rm rms} \approx 10^{-5}$ nG constricts the UHECRs coming from 1 Gpc along the observer's line of sight.

Lepto-hadronic model

• High-energy peak is explained by a combination of SSC and line-of-sight UHECR interactions and we find that *L* < *L*_{Edd} in this model

Multi-messenger Implications:

- *The neutrino flux from individual BL Lacs obtained is too low to be detected by currently operating and upcoming future detectors*
- For $E_{p,\max} = 10$ EeV and deflections in the EGMF and GMF, identifying UHECRs coming from individual BL Lacs will be difficult