TALE Cosmic Rays Composition

Tareq AbuZayyad for the Telescope Array Collaboration ICRC 2021 Berlin, Germany 2021/07/13

Outline

- Introduction
- TALE Detector
- Data and Analysis
- Results
- Summary

Introduction

- We present results on a measurement of the cosmic-ray composition using the Telescope Array Low Energy Extension (TALE) Fluorescence Detector (FD).
- We infer composition through measuring the shower development X_{max} .
- The measurement covers the cosmic rays energy range 10^{15.3} – 10¹⁸ eV

Introduction

- CR composition results based on four years of observation were recently published in Astrophysical Journal: DOI: 10.3847/1538-4357/abdd30
- We will discuss these results, and present updated results using seven years of data (~30% larger data set)

Telescope Array (TA) Low Energy Extension (TALE)

All 10 Telescopes installed and in operation since fall 2013

2013/03/29

80 scintillation surface detectors deployed:

40 SDs with 400m spacing

40 SDs with 600m spacing

Majority started operations in summer of 2017.

Data and Analysis

- TALE FD monocular data (Cherenkov light dominated).
- Data collection period: 06/2014 11/2018 (published)
 - 2633 hours of observation
- Data collection period: 06/2014 04/2021 (this conference)
 - 3456 hours of observation
- Monte Carlo: EPOS-LHC hadronic model (using CONEX generator)

Analysis: Primary Fractions (Xmax Fits)

- Event reconstruction: Shower calorimetric energy (E_{cal}), shower Xmax for each event.
- Events (Data & MC) binned in energy; bins [0.1 in log(E)]
- At each energy bin:
 - Fit Data Xmax distribution histogram as a sum of four (MC) primary Xmax distributions:
 - Primaries: proton, helium, nitrogen (CNO), iron.
 - MC / Data reconstructed, filtered identically.
- Energy range: $15.2 < \log 10(E_{cal} [eV]) < 18.0$
 - Run out of statistics above 1018 eV.
- Use ROOT's TFractionFitter to do actual fit.

Reconstruction Resolution (Geometry) (1)

- One histogram per decade in energy starting at E = 10^{15.3} eV
- Shower Track R_p [m]
- Histogram: $\Delta R_p / R_p$

Reconstruction Resolution (Geometry) (2)

- One histogram per decade in energy starting at $E = 10^{15.3} eV$
- Shower Track ψ angle (degree)
- Histogram: $\Delta \psi$ (degree)

Reconstruction Resolution (Energy)

- One histogram per decade in energy starting at E = 10^{15.3} eV
- Shower Energy [eV]
- Histogram: $\Delta E / E$

Reconstruction Resolution (Xmax)

- One histogram per decade in energy starting at E = 10^{15.3} eV
- Shower X_{max} [g / cm²]
- Histogram: ΔX_{max} [g / cm²]

Example X_{max} distributions (1)

- Data and MC events reconstructed with energies in the range of:
- $15.7 < \log_{10}(E_{cal}) < 15.8$
- All Plots: (Black) Data
- Top left: Iron
- Top right: CNO
- Bottom left: Helium
- Bottom right: Proton

Example X_{max} distributions (2)

• Data and MC events reconstructed with energies in the range of:

 $16.7 < \log_{10}(E_{cal}) < 16.8$

- All Plots: (Black) Data
- Top left: Iron
- Top right: CNO
- Bottom left: Helium
- Bottom right: Proton

Fit results (EPOS-LHC)

- Published results based on four years of data.
- Lowest Energy bin starts at: log₁₀(E_{cal}) = 15.2
- Mean log(A) calculated as a weighted sum of log(A) for each of 4 fit primaries.
- TALE data <ln (A)> from fractions in top figure.

Mean Reconstructed X_{max} vs. Shower Energy

- (Top Figure): Reconstructed Data <X_{max}> vs. Shower total Energy starting at log(E [eV]) = 15.3
 - Also shown, results for 4 MC primaries.
- (Bottom Figure): A broken line fit to TALE data <X_{max}>
 - Break point: 17.23 +/- 0.05
 - Slope before: 35.13 +/- 0.35
 - Slope after: 62.40 +/- 4.95
- (Bottom Figure): Also shown (red squares) are <X_{max}> reported by TA using hybrid events from Black Rock / Long Ridge FD's and the main SD array.

Mean Reconstructed X_{max} vs. Shower Energy

- Including data collected between 2018/12 through 2021/04
- (Top Figure): New Data <X_{max}> compared to published data (2014/06-2018/11)
- (Bottom Figure): All data along with updated broken line fit to data
 <X_{max}>
- (Both Figures): Also shown (red squares) are <X_{max}> reported by TA using hybrid events from Black Rock / Long Ridge FD's and the main SD array.

Summary

- Presented a TALE measurement of cosmic rays composition;
 - Updated through April 2021
- Data X_{max} distributions were fit to a mix of four primaries (p, He, CNO, Fe)
- Results: Fit primary fractions; mean log (A) calculated from fit primary fractions
- Mean X_{max} variation with shower energy shows a break in the elongation rate at E = 10^{17.2} eV.