

Science Benchmarks Science Benchmarks for SWGO for SWGO

Ulisses Barres de Almeida, CBPF (Brazil) Gwenael Giacinti, MPIK (Germany) Francesco Longo, INFN & Uni Trieste (Italy)

mark Description	
time for 5σ detection:	Lollaboration
) Ge <mark>W/W/M/.SaleB@?@,rg</mark>	
index 1752 eStar copf.br	: spokespersons@swgo.org
mum exp-cutoff energy de-	Conclusion
ble 95% CL in 5 years for:	
eV) = 5 mCrab, index = -2.3	
angular extension detected	
in 5-yr integration for:	
TeV) = 5×10 ⁻¹³ TeV/cm ⁻² .s	
num diffuse cosmic-ray	C 2021 - Berlin, Germany / Virtual - July 2021
ual background level	

The SWGO Concept

Image © Richard White, MPIK

• Extended energy range

→ From c. 100 GeV to the PeV scale

o Design Elements

- → water Cherenkov detector (WCD) units
- → Large (80,000 m²) high-fill factor core
- → Low-fill factor outrigger covering at least an area of 200,000 m²

Site

- → Deployed at high-altitude in the Andes
- → Above 4,4 km a.s.l.

The SWGO Science Case

 PeVatrons and Galactic Accelerators

- → Poses a requirement of ~30% on the energy resolution for identification of spectral features above 100 GeV
- Gamma-ray Bursts and transients
 - → Exploits the wide-FoV and continuous duty cycle to work as a monitoring instrument complementary to CTA

Dark Matter searches

- → constrain the entire WIMP mass range, up to 100 TeV at the GC
- Cosmic-ray studies
 - Capability to detect single muons crucial for mass-resolved studies up to PeVs

Science Case: https://arxiv.org/abs/1902.08429

Science Benchmarks for SWGO

Science Case	Design Drivers	Benchmark Description
Transient Sources:	Low-energy sensitivity &	Min. time for 5σ detection:
Gamma-ray Bursts	Site altitude ^{<i>a</i>}	$F(100 \text{ GeV}) = 10^{-8} \text{ erg/cm}^2.\text{s},$
		PWL index = -2., $F(t) \propto t^{-1.2}$
Galactic Accelerators:	High-energy sensitivity &	Maximum exp-cutoff energy de-
PeVatron Sources	Energy resolution ^b	tectable 95% CL in 5 years for:
		F(1TeV) = 5 mCrab, index = -2.3
Galactic Accelerators:	Extended source sensitivity	Max. angular extension detected
PWNe and TeV Halos	& Angular resolution ^c	at 5σ in 5-yr integration for:
		$F(>1TeV) = 5 \times 10^{-13} \text{ TeV/cm}^{-2}.\text{s}$
Diffuse Emission:	Background rejection	Minimum diffuse cosmic-ray
Fermi Bubbles		residual background level.
		Threshold: $< 10^{-4}$ level at 1 TeV.
Fundamental Physics:	Mid-range energy sensitivity	Max. energy for $b\bar{b}$ thermal relic
Dark Matter from GC Halo	Site latitude ^d	cross-section limit at 95% CL in
		5-years, for Einasto profile.
Cosmic-rays:	Muon counting capability ^e	Max. dipole energy at 10^{-3} level;
Mass-resolved dipole /		Log-mass resolution at 1 PeV -
multipole anisotropy		goal is A={1, 4, 14, 56}; Maxi-
		mum multipole scale > 0.1 PeV

The set of core science cases has been defined to guide the R&D studies and to benchmark the final observatory design among different options and trade-offs.

The **benchmarks** reflect a minimum set of science goals that encompass the full set of performance requirements for the Observatory.

The **quantitative benchmarks** will be used to compare and select a set of candidate configurations for the array, currently under study.

Table 1: SWGO Science Benchmarks. ^{*a*}Site altitude to be greater than 4.4 km above sea level. ^{*b*}Energy resolution < O(30%) throughout core energy range 1-100 TeV. ^{*c*}Angular resolution $\sim 0.15^{\circ}$ throughout core energy range 1-100 TeV. ^{*d*}Site latitude not constraining among candidates under consideration. ^{*e*}WCD units with muon identification capability for γ /hadron discrimination.

Design Implications

- The SWGO reference configuration
 - → A dense core array with excellent gamma/hadron separation for low energy detection < 300 GeV, with circa 5x the effective area of HAWC.
 - → An **extended sparse array** with peak sensitivity between 50 and 100 TeV to approach LHAASO's performance at the PeV range
 - → Muon tagging capability at individual WCD units for cosmic-ray studies and improve background rejection
 - → Improved angular (~0.15°) and energy (~30%) resolution in the core 1-100 TeV range

Thank you!

First Collaboration Meeting

at the Padova Astronomical Observatory, Italy, on October 30th–31st 2019

www.swgo.org

ulisses@cbpf.br spokespersons@swgo.org

The SWGO Collaboration involves more than 100 scientists from 12 countries.

