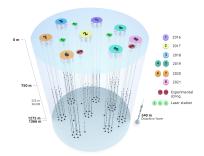
Development of the Double Cascade Reconstruction Techniques in the Baikal-GVD Neutrino Telescope

Eliška Eckerová

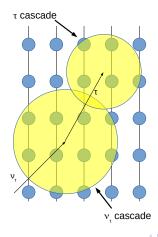

on behalf of the Baikal-GVD Collaboration Comenius University in Bratislava, Slovakia

ICRC 2021 Berlin

July 16, 2021

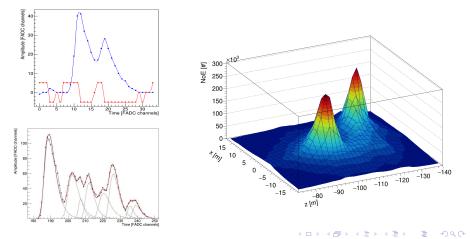
Baikal Gigaton Volume Detector (Baikal-GVD)

- $\bullet\,$ neutrino telescope installed at the depth of \sim 1300 m in the deepest freshwater lake in the world Lake Baikal
- $\bullet\,$ basic independently working unit $\to\,$ cluster
- a cluster consists of 288 Optical Modules (OMs) arranged in 8 strings = 36 OMs on each string
- OM consists of photomultiplier tube enclosed in a pressure-resistant glass sphere
- $\bullet\,$ current status 8 clusters are deployed \Rightarrow 2304 OMs $\Rightarrow\,$ effective volume $\sim\,$ 0.4 km^3



Tau Neutrino Interaction

Charged current interaction of ν_{τ}


- two types of signatures according to tau decay modes:
 - ullet decay to muon ightarrow single cascade signature, branching ratio $\sim 17\%$
 - $\bullet\,$ decay to electron/hadrons $\rightarrow\,$ double cascade signature, branching ratio $\sim\,$ 83%

B> B

Double Cascade Reconstruction Techniques

- Search for double cascades with double pulses
- Single cluster double cascade reconstruction
- Multi-cluster double cascade reconstruction

Thank you for your attention.