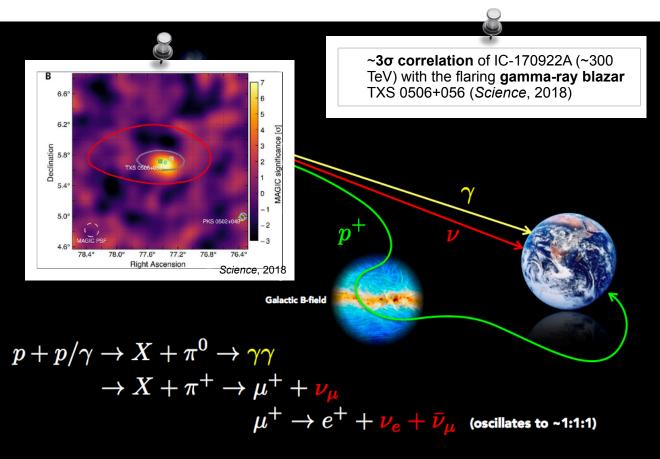
Follow-up of neutrino alerts with IACTs

D. Dorner for FACT


H. Ashkar, Y.Becherini, M.Cerruti, C.Hoischen, R.Konno, F. Schuessler, M.Senniappan for H.E.S.S.

E. Bernardini, E. Blaufuss, C. Boscolo-Meneguolo, T. Kintscher, M. Mallamaci for IceCube

<u>K. Satalecka,</u> M.Artero, A.Berti, H.Boekenkamp, A.Fattorini, L.Heckmann, S.Mangano, H.A.Mondal, K.Noda, S.Sakurai, L.di Venere, I.Viale, S.Yoo for MAGIC

W. Jin, M. Santander, K. Farrell, J. Quinn, J. Christiansen, J.P. Caldwell, M. Lundy for VERITAS

Motivation

IACTs

Typical for all:

- Energy resolution: ~15-20%
- Angular resolution: ~0.06 deg
- Sensitivity:
- ~ 10⁻¹¹ TeV cm⁻² s⁻¹
- (> 100 GeV) in 30 min

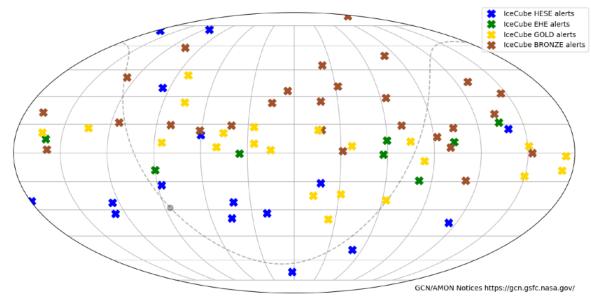
FACT

- Camera FoV: 4.5°
- Energy range: 300 GeV 10 TeV
- Repositioning speed: 180 deg/15 sec

H.E.S.S.

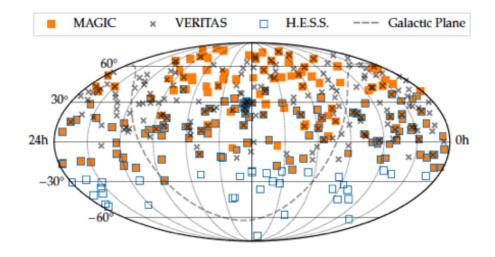
- Camera FoV: 5°
- Energy range: ~20 GeV 100 TeV
- Repositioning speed: 200 deg/min

MAGIC



- Camera FoV: 3.5°
- Energy range: ~20 GeV 100 TeV
- Repositioning speed: 180 deg/25 sec

- Camera FoV: 3.5°
- Energy range: ~100 GeV >30 TeV
- Repositioning speed: ~1 deg/sec


IceCube follow-up programs: single neutrino events

• Single neutrino events:

- Since April 2016 (EHE/HESE event streams)
- Upgrade in 2019 to BRONZE/GOLD event streams with 30%/50% probability of being astrophysical
- Publicly distributed via AMON, all IACTs participate
- Goal: identify the EM counterpart to the neutrino event
- Here we concentrate on alerts sent since October 2017

IceCube follow-up programs: GFU*

- All-sky flares: same algorithm, but not restricted to pre-defined directions
- Goal: find the EM counterpart

***GFU** stands both for Gamma-ray Follow-Up program and IC event selection used also in the single event alerts. Here used in the 1st sense.

- Neutrino multiplets (*flares*) from pre-defined source list:
 - Privately distributed under MoU
 - MAGIC & VERITAS (since 2012), H.E.S.S. (since 2019)
 - 339 sources from 3LAC/3FHL and TeVCAT catalogs (mostly AGN)
 - Sources selected according to variability, distance and potential visibility for IACTs
- Looking for neutrino flares with duration from seconds to 180 days
- Alert sent when pre-defined significance threshold passed
- Goal: determine the changes to the state of the source (e.g. quiescence vs flaring or spectral changes)
- Here we concentrate on alerts sent after the upgrade in 2019

Follow-up strategies

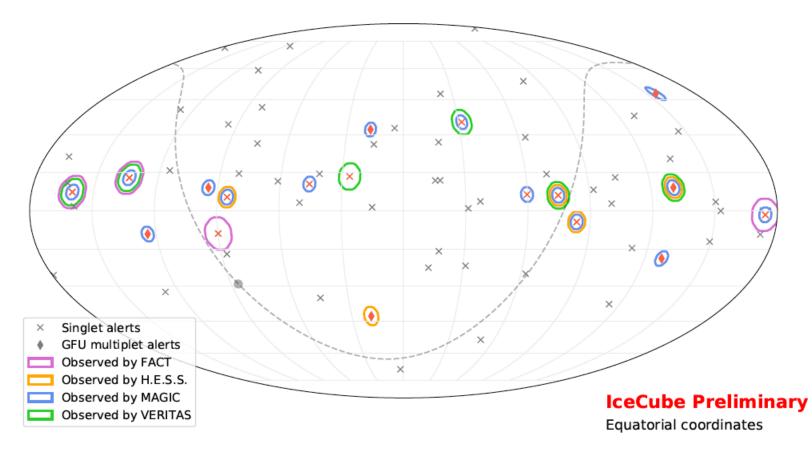
• FACT:

 Before May 2019: Follow-Up on a "best-effort" basis, i.e. if position is observable, observation not conflicting with core-monitoring, alert is not followed up by more-sensitive instruments

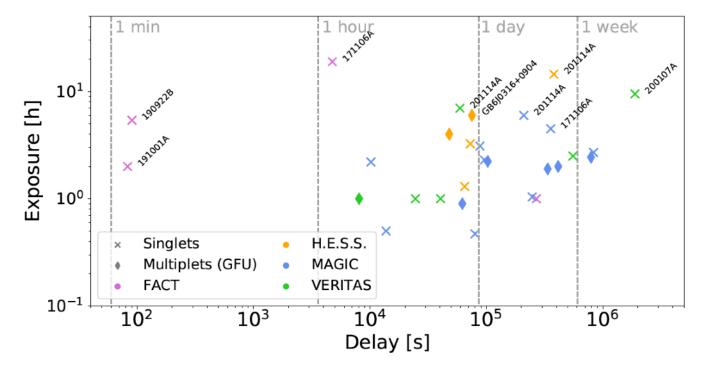
• Since May 2019: Automatic follow-up for 1h, extension depending on result of quick-look analysis and MWL info

• H.E.S.S.:

- Program part of H.E.S.S. Key Science; details updated every year during call for proposals
- Currently focussing on deep (~10h) observations of few (~5/yr) candidates
- Automatic repointing for GOLD alerts
- Extension of observations if on-line analysis shows hint of signal or interesting MWL info

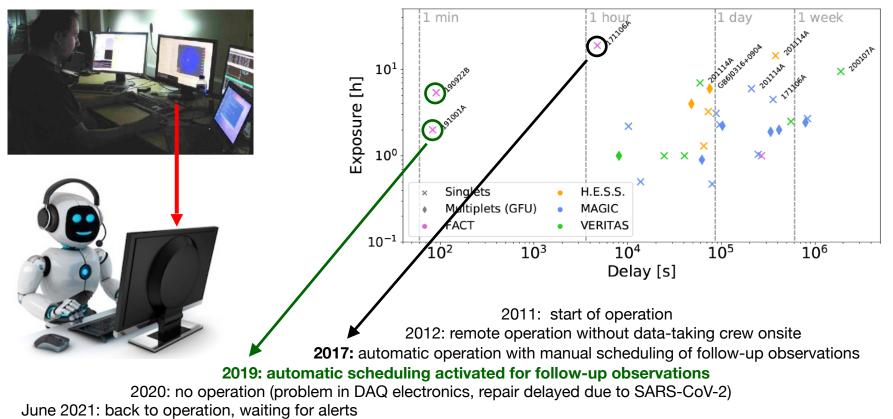

• MAGIC:

- 60 h/yr reserved for neutrino follow-up
- Automatic repointing for GOLD alerts with 0.5 deg loc. error at 50% CL, visibility estimate up to the end of nearest night; first observation for max. 2.5 h
- Extension of observations if on-line analysis shows hint of signal or interesting MWL info


• VERITAS:

- 45 h/yr of pre-approved follow-up observations + 18 h on potential neutrino counterparts. Part of the VERITAS Long Term Science Plan.
- Automatic repointing for GOLD and BRONZE alerts. Exposures between 3-25 h depending on neutrino astrophysical probability, proximity of potential EM counterparts, online analysis results.

Alerts observed since October 2017


Typical IACT response

• Typical delays: immediate - 10 days (depends on visibility, weather, moonlight, MWL info...)

• Typical observation time: 0.5 - 10s of hours (same dependencies as above)

FACT automatic scheduling

Observed alerts: single events

highlight	Name	Energy [TeV]	Signalness	FACT	H.E.S.S.	MAGIC	VERITAS
	IceCube-171106A	230	0.75	19 h	_	4.5 h	2.5 h
	IceCube-181023A	120	0.28	1 h	_	_	_
	IceCube-190503A	100	0.36	_	_	0.5 h	_
	IceCube-190730A	299	0.67	_	_	3.1 h	_
	IceCube-190922B	187	0.50	5.4 h	_	2.2 h	en
	IceCube-191001A	217	0.59	2.0	_	2.3 h	1.0 h
	IceCube-200107A	_	_	_	_	2.7 h	9.5 h
	IceCube-200926A	670	0.44	_	1.3 h	1.0 h	
	IceCube-201007A	683	0.88	_	3.25 h	0.5 h	_
	IceCube-201114A	214	0.56	_	14.5 h	6 h	7 h
	IceCube-201222A	186	0.53	_	_	_	1.0 h

• From October 2017 until December 2020, IceCube sent 62 single event public alerts

- 11 were observed by at least one IACT
- In total, each collaboration spent 20 h of its observations time on public IceCube alerts follow-up
- FACT, H.E.S.S. and VERITAS observed 3-5 alerts each but concentrated longer exposures on a few of them
- MAGIC performed the highest number of follow-ups (nine) but with typically shorter exposure

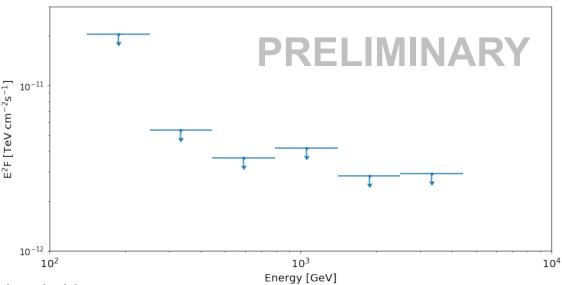
Observed alerts: neutrino multiplets

,	Source	Duration [dava]	Pre-trial significance	H.E.S.S	MAGIC	VERITAS
Highligh	Source	Duration [days]		п.е.э.э		VERITAS
hia	MG1J181841+0903	Multiple alerts	$> 3.3 \sigma$	200000000000000000000000000000000000000	1.6 h	_
J'A	1ES 1312-423	0.26	3.4σ	2.6 h		_
	PMN J2016-09	0.01	3.6 σ	—	0.9 h	_
	OP 313	Multiple alerts	$> 3.0 \sigma$	—	3.2 h	_
Mr.	OC 457	0.30	3.3 <i>o</i>	_	2.5 h	_
trightight	GB6J0316+0904	2.25	3.1 <i>o</i>	6 h	1.9 h	1.0 h
94	All-sky alert (PMN J0325-1843)	3.67	5.1 σ	_	2.0 h	
L						

- Since the upgrade in 2019, IceCube sent 27 multiplet alerts from 17 sources and one all-sky alert
- 7 sources were observed by at least one IACT
- GB6 J0316+0904 was observed by all participating IACTs
- H.E.S.S. took the longest exposures
- MAGIC performed the highest number of follow-ups (six)

Neutrino multiplet from 1ES 1312-423: H.E.S.S.

- Observation triggered on neutrino events from vicinity of known TeV emitter 1ES 1312-423
- Neutrino alert duration of 0.26 days
- **H.E.S.S.** re-observed the source for 2.6h => $\sim 4\sigma$ significance
- Cross-checked by independent analysis chain
- Contemporaneous multiwavelength observations with Swift (UVOT, XRT)
 - No significant change in the non-thermal emission of the source during the ToO

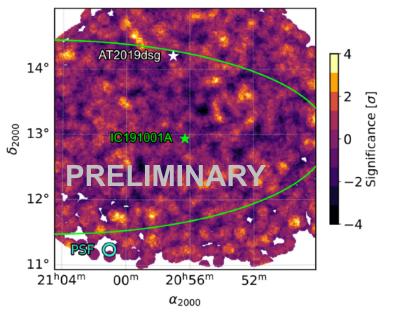

All-sky alert (PMN J035-1843): MAGIC

• Neutrino flare:

- Found using the all-sky multiplet search algorithm
- FAR for this alert channel < 1/yr
- Duration: ~3.7 days
- Significance: 5.1 σ (pre-trial)
- Alert issued with delay of 1 day, channel was in test phase

• MAGIC observations:

- Delay: ~5 days after passing the alert threshold
- Exposure of 2h, with zenith angle 47-52 deg
- Pointed to the nearest (~0.35 deg away) source PMN J035-1843, a blazar with unknown redshift
- No detection, integral flux upper limit: F_{UL} (> 250 GeV) = 5.16 x 10⁻¹¹ cm⁻² s⁻¹
- Differential flux ULs calculated using the Rolke method at 95% C.L. and assuming a spectral index of 2.5



IceCube-191001A - VERITAS observation

- VERITAS
- IceCube GOLD neutrino event detected on Oct 1st, 2019 at 20:09 UT (GCN Circular 25913). Large 90% uncertainty region (~26 deg² due to event topology); 59% signalness.
- Neutrino event potentially associated with tidal disruption event AT2019dsg (Stein et al. Nat. Ast. 2021). Neutrino detected ~175 days after the TDE discovery

- VERITAS took a 1 hr exposure centered at the refined neutrino position as it became visible, ~3 hr after the refined position was circulated.
- No significant excess in the FoV including the best-fit neutrino position (0.5σ) and the TDE (-0.4σ). Energy threshold: 140 GeV.

Summary

- IACTs are actively involved in IC neutrino follow-up programs:
 - Neutrino multiplets (flares), since 2012 for catalogued sources, since 2019 including all-sky alerts:
 - Goal: determine the changes to the state of the source
 - One source detected (1ES 1323-423, H.E.S.S), but flux at the same level as previously observed
 - Since 2016, single high energy neutrino events with high probability of being astrophysical
 - Goal: find the EM counterpart
 - No other detections since IC-170922A/TXS 0506+056 (MAGIC and VERITAS)
- Observation strategies developed and updated as more channels become available
- Current trends:
 - Fast reaction (typical delay < 1day)
 - Few deep exposures (FACT, H.E.S.S., VERITAS) vs follow-up of as many alerts as possible (MAGIC)
- Publication with detailed results from Oct 2017 Dec 2020 coming soon!
 - Upper limits to integral VHE gamma-ray flux and differential SED ULs, with data from more IACTs combined where possible (also for interesting counterparts)
 - Sky-maps with flux ULs for the entire IC error region for each event
 - Including MWL data if available