

Development of drone-borne cal-pulser system for radio observatories of ultra-high energy air showers Kuo, Chung-Yun for the TAROGE collaboration Department of Physics and Leung Center for Cosmology and Particle Astrophysics, NTU 2021/07/07

Outline

- Introduction & motivation
- Design and development
 - Pulse transmitter
 - Differential GPS
 - RFI measurement
- Application to TAROGE experiments
- Summary & application

Radio detection of UHE particles

- Radio emission from shower induced by UHE particles
 - Geo-magnetic radiation & Askaryan radiation
 - Coherent radio impulse
- Radio detection
 - Long radio propagation length in air \Rightarrow Large effective area High duty cycle \Rightarrow More exposure Recent RF technology \Rightarrow Cost effective \Rightarrow Radio detection is a promising technique \Rightarrow Like: ANITA, ARA and TAROGE

Motivation

- Cal-pulser is crucial for radio experiment
 - Validation
 - Calibration: Trigger, timing, power (energy)
 - Characterization: RF propagation
- Drone-borne cal-pulser
 - Can cover entire field of view
 - Easy to deploy in the field
 - Programmable flight path

Requirements of the drone-borne cal-pulser

- High power impulse generator for long distance
- Accurate position & time
- Amplitude controller
- Programmable flight path
- Low RFI to ensure clean signal and prevent fake trigger
- Light-weighted and compact to be attached on drone
- Easy to deploy in the field

Design of drone-borne pulser

- Solid-state impulse generator
 ⇒ Strong impulse signal
- On-board MCU & digital step attenuator
 Amplitude controller
- D-GPS \Rightarrow Accurate position information (cm)
- RFI enclosure \Rightarrow Low RFI
- Compact & light-weighted (~1.4kg)
- Longer flight time the better
 - ⇒ Typically 30 minutes due to batteries
- Practical flight distance up to 1 km

System diagram

Transmitter: High power impulse generator and amplitude controller

- Solid-state pulse generator
 - \Rightarrow <u>High power</u> and <u>stable</u>:

Unipolar impulse at $150 \pm 3 \text{ V}$

(Provided by the collaborators in KU.)

- Digital step attenuator (0~-31dB)
 ⇒ Amplitude controller
- H/L pass filter (110MHz~1.2GHz) & -13dB Attenuator
 ⇒ Prevent damage to digital attenuator
- \Rightarrow Pulse is powerful enough for long range calibration

Transmitter: Transmitting antenna

- Broadband bicone
 ⇒ 180~350 MHz
- Well-defined polarization angle
 ⇒ Cross pol. leakage < -15 dB
- Wide beam-pattern
 ⇒ Beamwidth ~ 60°
- Light-weighted & compact size ⇒ 600 g
- Wind resistance
- Telescopic bicone antenna
 ⇒ Easy transportation

Differential GPS

GPS:
 ~<u>3 m</u> in x and y, ~<u>10 m</u> in z direction

• DGPS:

2 cm in x,y and z direction ⇒ 0.002° at 600m away

Measurement of distance between two receiver

RFI measurement of drone & pulser

Anechoic chamber

- Drone and remote controller (RC)
 - CW peak and impulsive noise
 ⇒ Neglectable at 150m away
- Remote control
 - Impulsive noise
 - ⇒ Neglectable at 50 m away
- Pulser system
 - Strong impulsive noise
 ⇒ Shielding with a RFI enclosure

RF shielding of the pulser board

⇒ Shielding box provide more than -40 dB attenuation!
⇒ Light-weighted RF shielding box (around 300g)

Application to TAROGE experiment

- Successfully applied to the calibration
 - TAROGE-2,3,4 in Taiwan
 - 14 flights for 4 hours
 - Refer to <u>Chen's talk</u>
 - TAROGE-M in Antarctica
 - 2 flights for 30 minutes.
 - Low temp. and high altitude (~2700m)
 - Refer to <u>S.H. Wang's talk</u>

Ref: Y. Chen, PoS(ICRC2021)263 S.H. Wang, PoS(ICRC2021)1173

Pulsing time and amplitude control

Expected attenuation v.s relative transmitted power

- Precise timing of pulses \Rightarrow Easier to select pulser events
- Pulse generator and amplitude controller work well

In-air drone position

- Comparison between expectation by D-GPS and reconstruction by interferometry
- Select the event with elevation higher than 7° and exclude biased events Ref: S.H. Wang, PoS(ICRC2021)1173

 $\Delta \phi$ distribution

Summary and application

- New drone-borne radio cal-pulser has been successfully developed
 - Perfect operation in Taiwan and Antarctica
 - Calibration can be done from any direction of interest with drone
- Further application:
 - Modeling the ground interference (Detailed information in Y. Chen's talk (**PoS(ICRC2021)263**))