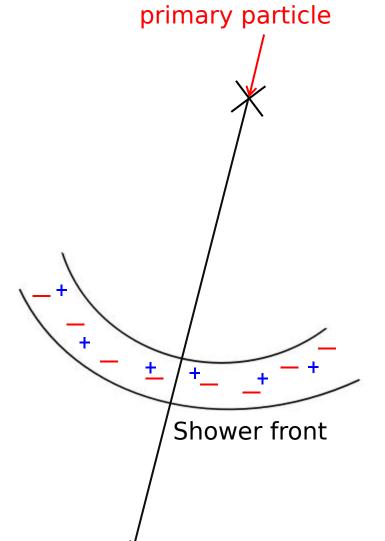


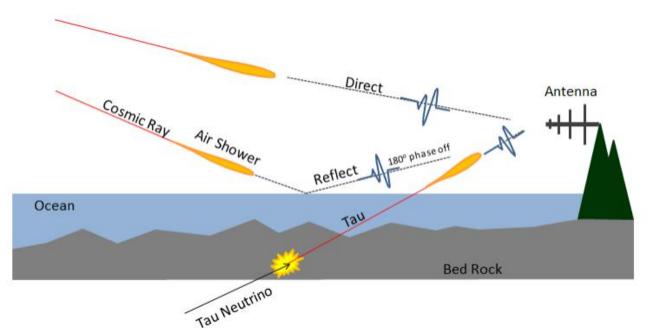
TAROGE experiment and reconstruction technique for near-horizon impulsive radio signals

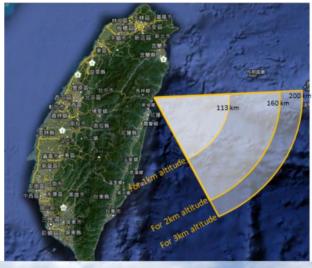

Yaocheng Chen (for the TAROGE collaboration) Department of Physics and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University

2021/July

Radio detection of UHECRs

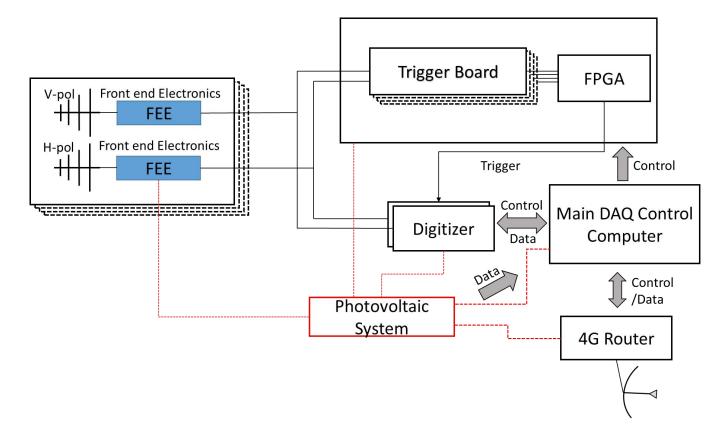
Radio emission:


- Inelastic interaction between primary particle and atmosphere creates an extensive air shower (EAS).
- Charged particles (mainly e⁺ and e⁻) in the EAS are deflected by Earth's magnetic field and thus emits geomagnetic radiation polarized with Lorentz force direction.
- Coherent radiation relativistically beamed in EAS forward direction.


Advantages of radio detection:

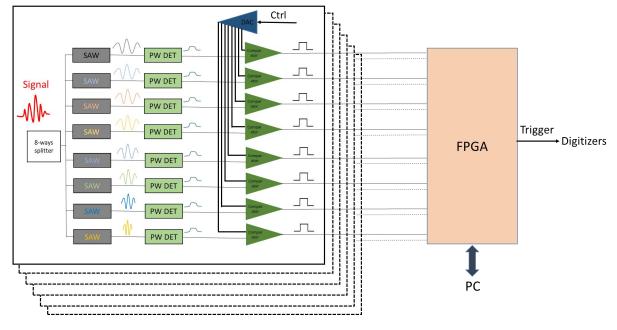
- Long propagation length in air (large area coverage)
- High duty cycle (day and night)
- Cost effective instrumentation

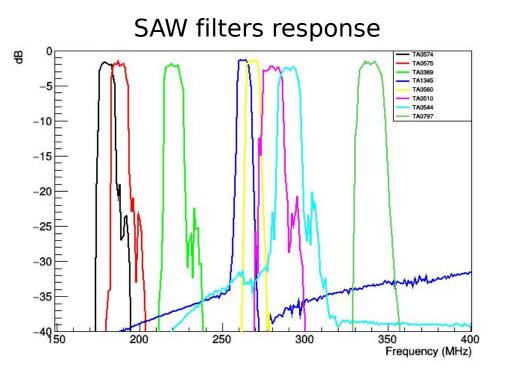
Concept of TAROGE


- TAROGE aims at radio detection of near-horizon EAS induced by UHECRs and Earth-skimming v_{τ} ;
- Located on high mountains of Taiwan east coast, both direct and ocean-reflected signals can be collected;
- Great advantages: high duty cycle (~90%), large acceptance and cost effective;
- Four stations deployed from 2014-2019;
- Frequency: 180 MHz to 350 MHz.

TAROGE-4 system architecture

- 1. 8 antennas (4 H-pol, 4 V-pol):
 - High gain: ~7 dBi
 - Broadband: 180~450 MHz

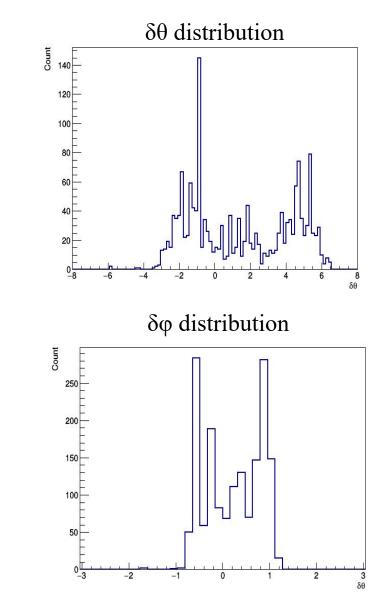

2. Front-end electronics:


- Filter: 180~350 MHz
- 63 dB low noise amplifier
- 3. Trigger system:
 - Multi-band, multi-channel coincidence technique

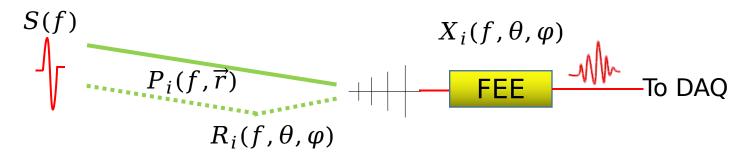
4. DAQ:

- 1.25 GHz sampling rate, 1500 samples, 350 MHz bandwidth
- 5. Off-grid power supply (PV)6. Real-time data transfer and control
- (4G network)

Advanced trigger system for suburban environment


- Multi-band coincidence technique:
 - Effective discriminating power for impulsive signals (wide-band) against CW noise
- 8 surface acoustic wave (SAW) filters are used to divide each channel:
 - Narrow bandwidth as well as steep cut-off
- Multi-channel coincidence technique:
 - Further reduces thermal noise effect
 - Independent in H-pol and V-pol.

Interference from ground reflected signal


- Angular reconstruction is crucial in data analysis:
 - Primary particle direction;
 - Energy reconstruction;
 - Distinguish up-going and down-going signals;
- Reconstruction performance in low elevation angle is degraded by interference from ground.
- Methods:
 - Raise the height of antenna towers
 => Practically limited
 - Deconvolution of reflection

=> Systematic error: Non-uniform terrain, modeldependent electromagnetic properties of ground

- Differential method
 - => Manage to cancel out response between channels

Differential method

• The received signal is modeled as: $W_i(f, \theta, \varphi) = S(f) * P_i(f, \vec{r}) * R_i(f, \theta, \varphi) * X_i(f, \theta, \varphi) + N_i(f)$ Subsequence signals R is phase shift due to propositions R is reflections Y is sufficient on the proposition of the set of the set

S: source signal; P_i : phase shift due to propagation; R_i : reflection; X_i : system responses, including antenna, filters, LNA, cables; N_i : noise; *i*: channel number.

- Define differential response: $\alpha_{ij} = \frac{R_i * X_i}{R_i * X_i}$.
- Apply α_{ij} to W_j : $W'_j = \alpha_{ij} * W_j = S * P_j * R_i * X_i + O(N_j)$, then, W'_j and W_i have common systematic effects $(R_i * X_i)$.
- Cross-correlating W_{j} and W_{i} , the common systematic effects are cancelled out.
- Grid search interferometric method to reconstruct the angles.

==> How to obtain α_{ij} ?

Obtain α_{ij} by drone-borne pulser

• For each cal-pulser event, we can have:

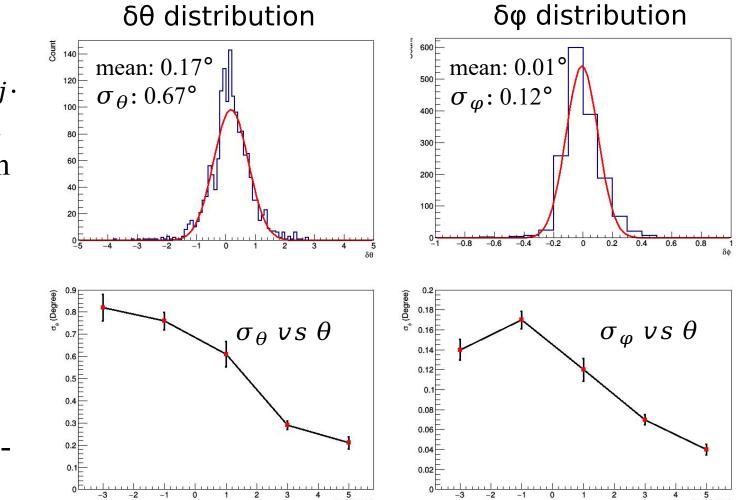
$$\alpha_{ij}^{m} = \frac{W_{i}^{m}}{W_{j}^{m}} * \frac{P_{j}^{m}}{P_{i}^{m}} = \frac{R_{i}^{m} * X_{i}^{m}}{R_{j}^{m} * X_{j}^{m}} + O(N_{i}^{m}) + O(N_{j}^{m}),$$

m denotes event number.

- α_{ij} is obtained by averaging α_{ij}^m .
- All angles scanning cal-pulser with good positioning is needed.
- ==> Drone-borne cal-pulser system:
 - Strong impulse (high SNR)
 - DGPS (centimeter-level positioning accuracy)
 - Easy control (scan all angles).

For details of drone pulser, please see: C. Kuo et al., PoS(ICRC2021) 283.

- Software solution:
 - Solve the problem in analysis level, don't need to change hardware part.
- Low systematic error:
 - No assumptions on terrain and ground electromagnetic properties
- Accurate pulser spectrum S(f) is not needed.
- Other system responses are also calibrated.


Angular resolution by differential method

Data set:

- Small angles range around antennas' boresight is scanned for obtaining α_{ij} .
- 1500 cal-pulser events inside scanned range are collected for validation from another flight.

Result:

- Angular resolution:
 - 0.67° in elevation
 - 0.12° in azimuth
- Even down into -3°, we still have subdegree resolution.

FYI: Horizon of TAROGE-4 is -0.85°

Summary:

1. TAROGE has advantages in: high duty cycle, large acceptance and cost effective instrumentation.

2. New trigger system at TAROGE-4 improves its performance.

- 3. Differential method for event angular reconstruction is feasible by using drone borne cal-pulser system.
- 4. Sub-degree level resolution is achieved for near-horizon events.

Future work:

- 1. Scan all angles in TAROGE-4 field of view.
- 2. Apply this method to other TAROGE stations.

Thanks for listening!