

太魯閣 TAROGI

TAROGE-M: TAROGE @ Mt. Melbourne Radio Observatory on Antarctic High Mountain for Detecting Near-Horizon Ultra-High Energy Air Showers

Shih-Hao Wang

(for the TAROGE and ARIANNA collaborations)

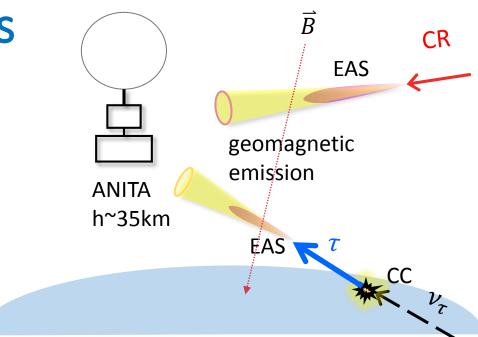
Department of Physics and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University

2021/07/04

Outline

motivation & goal

- TAROGE-M station at Mt. Melbourne
 - design and operation summary
- in-situ calibration with
 - Galactic noise
 - drone-borne pulser
- preliminary cosmic-ray search
 - expected area acceptance and angular distribution
 - event selection criteria
- summary & future works


Radio detection of UHE air showers

- Ultra high energy (UHE, E>10¹⁷ eV) cosmic rays (CR) & neutrinos
 - origin? characteristics?
- Radio pulse detection of air showers by UHECR & Earth-skimming tau neutrinos
 - geomagnetic emission (e^-e^+ , $\vec{E} \parallel \vec{v} \times \vec{B}_g$)
 - established technique for CR
- ANITA: efficient detectors for both
 - balloon-borne, ~35 km above Antarctica,
 - 200-1000 MHz band
 - 4 flights: each has live time ~30 day / 3 year
 - dozens of UHECR events

→ found anomalous events of unknown origin?

- upward-going air showers, E= 0.5-5 EeV
- 2 events at -27° & -35° elevation angle [2]
- 4 events at ~-6° elevation angle [3]

UHE tau neutrinos from transient sources? exotic or terrestrial origin?

→ detectors with comparable or better sensitivity are required to confirm the origin

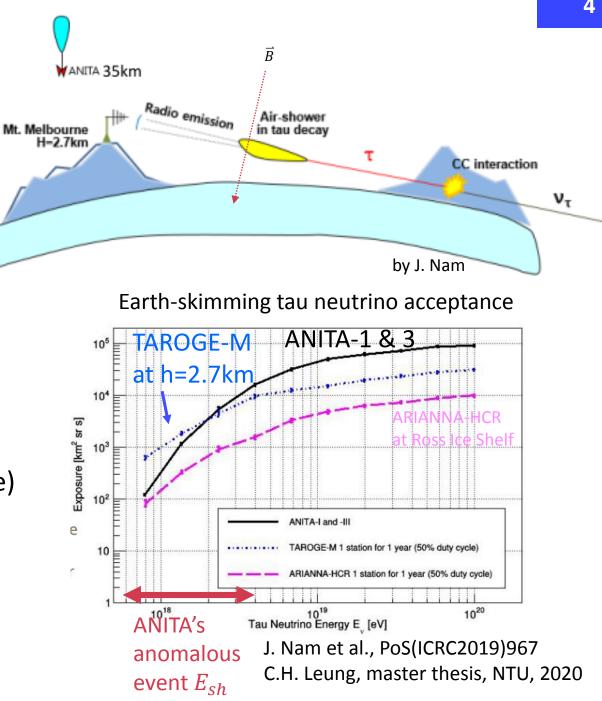
Ref:

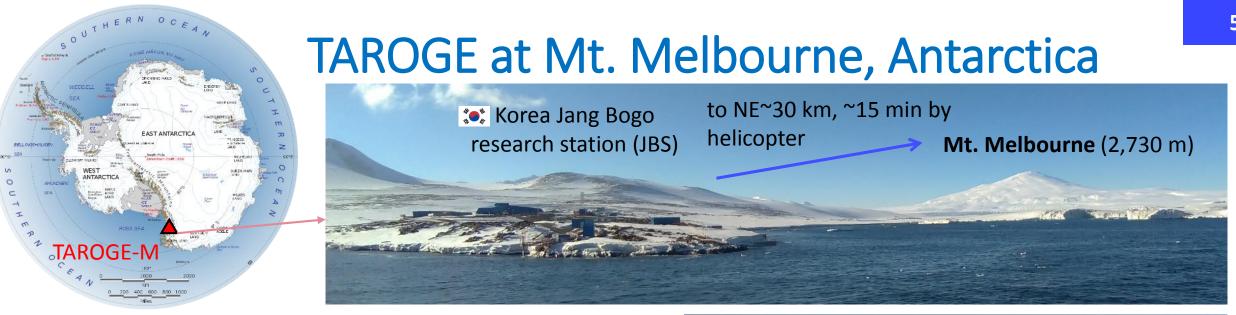
[1] F. Schröder, Prog. Part. Nucl. Phys. 93 (2017) 1.

- [2] P. Gorham et al., Phys. Rev. Lett. 121 (2018) 161102.
- [3] P. Gorham et al., Phys. Rev. Lett. 126 (2021) 071103.

Radio detector on high mountain

- advantages:
 - acceptance increase with \sim (height)^{3/2}
 - high duty cycle (>6 month/year)
 - easier to extend
 - lower energy threshold


Antarctic mountain: ideal candidate


- radio quiet
- strong (>60 μT) and near vertical geomagnetic field
- \rightarrow sensitive to near-horizontal showers


 \rightarrow horizontally polarized (Hpol, clear signature)

detector at ~3 km has comparable v_{τ} sensitivity as ANITA's around 1 EeV with a few station x year

[4] J. Nam et al., PoS(ICRC2019)967. [5] S. Wissel et al., JCAP 11 (2020) 065.

- 2,730 m high volcano at 74°20′55.88″S,164°41′35.38″
- strong (63µT) & near vertical (-82^o inclination) geomagnetic field

Ref: World Magnetic Model 2020; [4] J. Nam et al., PoS(ICRC2019)967

redeployed and upgraded from the prototype (2019) 2020/01/15 & 25 (4 people x 9 hours)

TAROGE-M

8x 30W PV panels

for summer operation (Aug-Apr)

design based on experiences of TAROGE & ARIANNA-HCR stations (Taiwan mountain & Ross Ice Shelf)

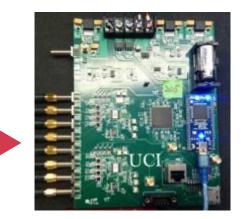
Main system

- in EMI shielding boxes in thermally insulated enclosure
- power consumption
 < 20 W

Inmarsat antenna satellite communication wind turbine test winter operation

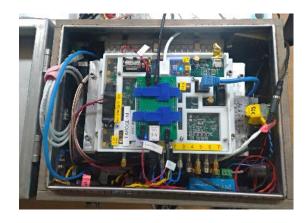
Rx: 6 LPDA antennas

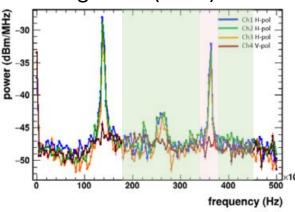
- gain ~7 dBi at 180-500 MHz
- 4 Hpol: // geomagnetic emission
- 1 Vpol: measure polarization
- 1 backward Hpol: veto noise behind
- installed on 3 m towers
- max baseline ~19 m
- survey antenna position with photogrammetry
 - 3mm accuracy is achieved
 - for event reconstruction


Ref: [4] J. Nam et al., PoS(ICRC2019)967. [7] S. Wang et al., PoS(ICRC2019)462

Data acquisition system

RF front-end module


- **180-450** MHz bandpass + 360 MHz notch
- 2-stage low noise amplifiers
- overall gain ~57 dB



8-channel SST board:

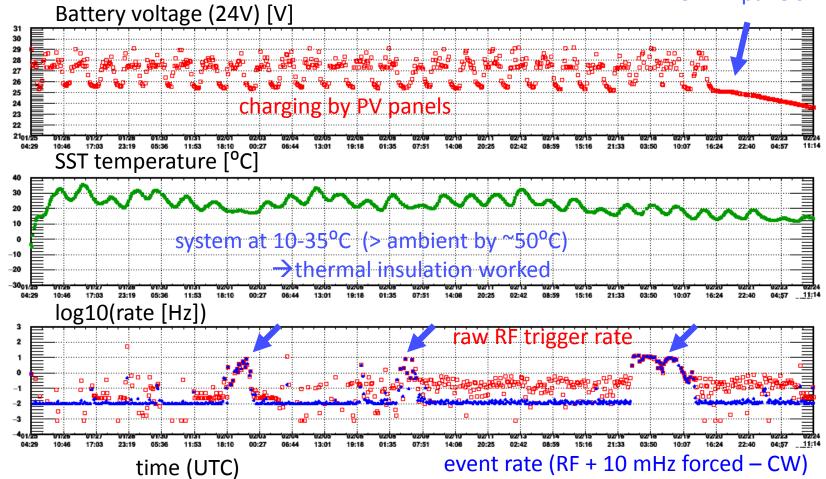
- proven performance in ARIANNA experiment at Ross Ice Shelf & South Pole
- triggering
 - channel lvl: dual-sided
 - threshold in 5 ns
 - station lvl: 3 out of 4 H pol coincidence in 32 ns
 - CW rejection: real-time FFT by Mbed
- sampling
 - 1Gsample/s, 12-bit ADC, 256 samples

bandwidth based on RF background (2019)

- single-board computer (BeagleBone Black)
 - system monitoring
 - online event filtering for transfer
 - ightarrow prioritizing Hpol pulse events
- Inmarsat modem
 - remote control & data transfer

[4] J. Nam et al., PoS(ICRC2019)967. [9] A. Anker et al., Advances in Space Research 64 (2019) 2595.
[8] S. Kleinfelder, E. Chiem, and T. Prakash, Proc. of 2014 IEEE NSS/MIC (2014) 1.

TAROGE-M operation in 2020


02/20 charging stopped, icing on PV panels

- continuous operation during 01/25 and 02/24
- failed at cold start after 02/24

→ DC/DC converter malfunctioning at low temperature

- typical event rate 1-10 mHz
- periods with high event rate 1-10 Hz
 - few hours to days
 - correlated with bad weather
 - similar to "high-wind" events of HCR station

→ high-wind events account for majority of recorded events

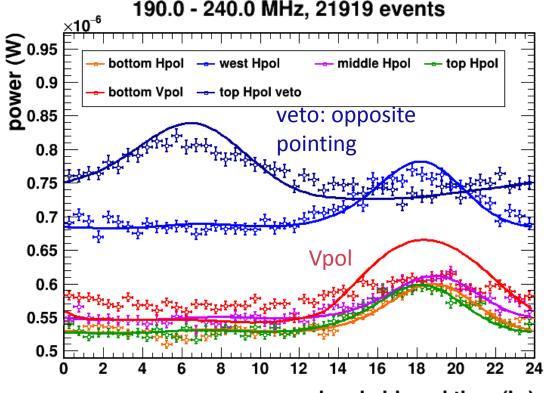
Ref: [7] S. Wang et al., PoS(ICRC2019)462; also PoS(ICRC2017)358.

2020-2021 season

- no activity due to COVID-19 pandemic
- inspection in Nov 2020
 - most of hardware are fine over the winter
- → the installation worked in windy
 & low-temperature environment

DAQ system sent back to lab for maintenance and full data access

special thanks to on-ice crews of Jang Bogo and Zucchelli stations for help


a few guy wires get loose, a few antenna elements damaged

main system intact

In-situ calibration with Galactic noise variation

Data: 2020/01/25-02/24

curve: simulation and fitting local sidereal time (hr) marker with error bar: observed mean with error of mean

Ref:

[12] S. Barwick et al., Astropar. Phys. 90 (2017) 50.

- [13] LFMap, E. Polisensky, Long Wavelength Array (LWA) Memo Series 111.
- [14] HFSS 15.0.3 software, Ansoft Corporation.

- forced-trigger events every 100 sec to monitor RF background
 - received band power at 190-240 MHz
- Galactic noise modeling following Ref. [12]
 - LFMap: Galactic noise + HFSS: free-space LPDA response + measured RF front-end response
 - fitting receiver noise for constant offset
- overall agreement between observation and simulation
 - Vpol: less variation → response affected by adjacent Hpol & ground (not modelled)
 - veto: deficient around max → sky partially blocked by hill behind (not simulated)

→ Hpol receiver responses are understood, while Vpol needs improvement

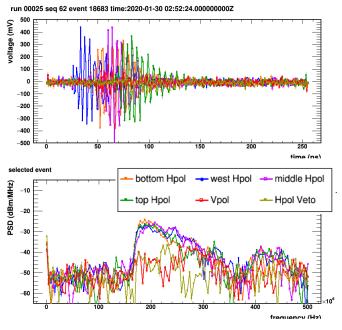
Drone-borne calibration pulser

- calibrate event reconstruction at near-horizontal directions
 - difficult to access and scan by other means

pulser & DGPS module

- configurable pulsing strength for stepped power scan
- ~1cm positioning accuracy

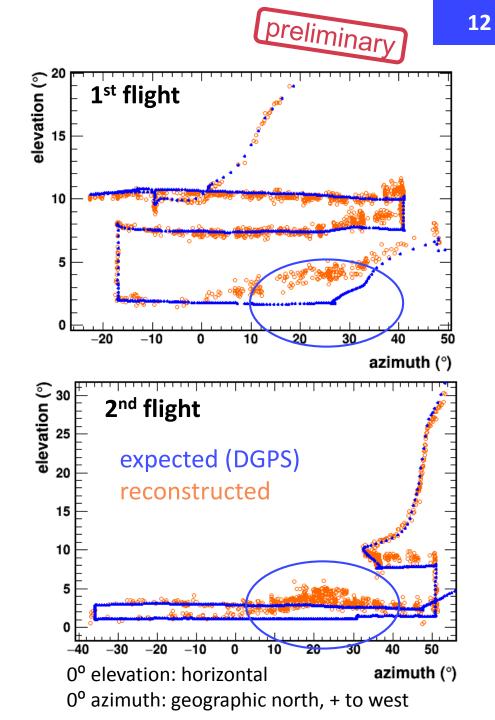
DJI M600P drone


biconical Tx antenna

two flights in 2020/01/30, each ~15 minutes

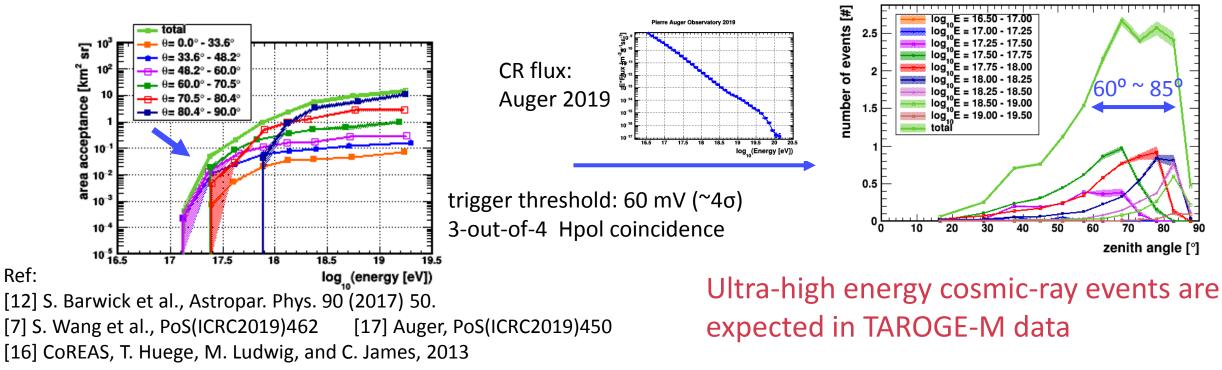
- at ~500 m distance, 5 Hz pulsing rate, ~6000 pulses detected
- calibrated the station orientation, phase center of antennas, and internal delay of receiver channels
 - using 10% of events with high SNR inside field of view

received pulse waveform and power spectrum


the talk about details of drone pulser: C. Kuo et al., PoS(ICRC2021)283.

Reconstruction of drone pulser events

• with interferometric method (similar to Ref. [10])


- angles → time difference of arrival → waveform cross-correlation
- Tx & Rx response deconvolved
- mis-reconstructed region with biased elevation (azimuth 10°-35°, elevation < 2°)</p>
 - reflection from the ground and objects nearby
 - → the response can be mapped and subtracted by further drone pulser (Ref [6])
- angular resolution: 0.2° in azimuth, 0.3° in elevation is obtained

Ref.: [6] Y. Chen et al., PoS(ICRC2021)263. (talk) [10] A. Romero-Wolf et al., Astropar. Phys. 60 (2015) 72.

preliminar **Cosmic-ray acceptance and angular distribution**

- detection simulation modified from HCR's [7]
 - use ~2000 CoREAS showers for HCR's as approximation
 - receiver response + SST trigger simulation
- energy threshold at ~300 PeV
- most sensitive to inclined cosmic rays at $\theta = 60^{\circ} \sim 85^{\circ}$
- event rate: 0.57/day, 17 events in 30 days

h = 0.03 kmh = 2.7 km## **HCR TAROGE-M**

80

Auger CR spectrum, live time 30.00 days: 17.1 events

Cosmic-ray event selection criteria

preliminary CR search in 30-day data

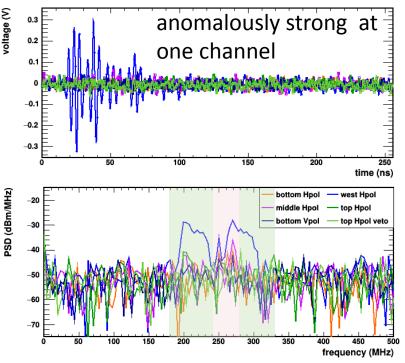
- 1,257,122 RF-trigger events
- majority: high-wind events
- empirically set cut, to be optimized

online event filtering:

CR is / has

comparable

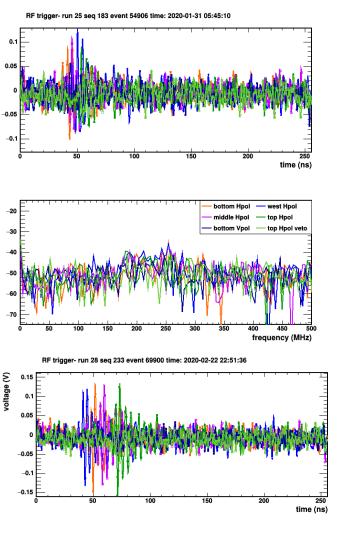
power &

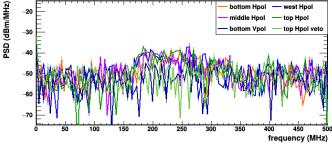

btw Hpol

rare

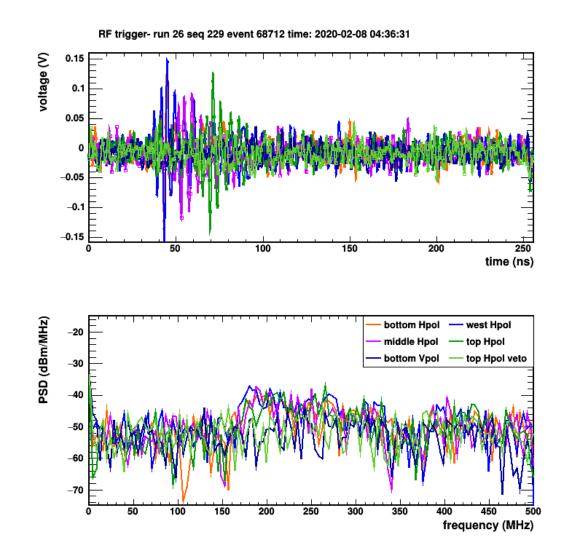
- define lower passband power (LPB) at [180-240] MHz & [280-330] MHz
- Hpol dominated • Hpol to Vpol power ratio > 3.6 dB
 - high-wind rejection
 - channel similarity: max to min Hpol LPB ratio < 7.5 dB $\frac{1}{9}$
- similar waveform Hpol / veto LBP ratio > 1dB
 - offline analysis: reconstruction cut
 - avg correlation coefficient > 0.7
 - from front directions
 - temporal clustering cut: no other selected events in ±600 s

preliminar

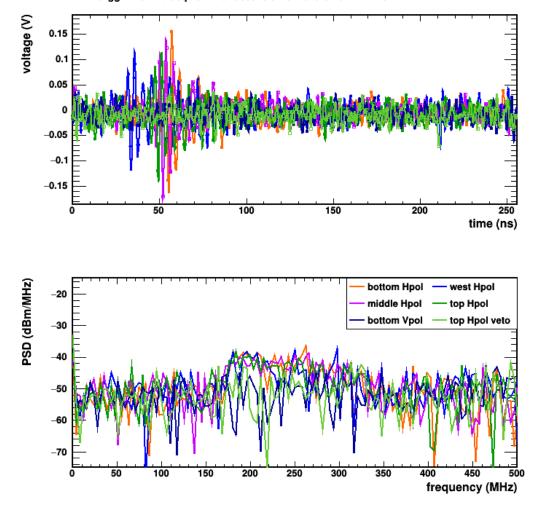

CR candidates



- 5 candidate events were identified
 - more events at inclined angles as expected
- → TAROGE-M is able to detect UHE air showers


run	event	timestamp (UTC)	avg. x-cor coefficient	azimuth (°)	zenith (°)	H/V power ratio
25	54906	2020/01/31 05:45:10	0.81	-62.2	25.5	2.4
26	50916	2020/02/07 17:11:37	0.88	46.7	66.6	6.4
26	68712	2020/02/08 04:36:31	0.84	-14.8	42.7	4.7
26	244803	2020/02/10 20:33:35	0.80	14.8	78.5	3.3
28	69900	2020/02/22 22:51:36	0.86	6.1	49.7	4.8

- Iower than expected number (5 vs 17)
- \rightarrow improved analysis cut and simulation in progress



CR candidates

RF trigger- run 26 seq 169 event 50916 time: 2020-02-07 17:11:37

Summary

- high-altitude radio detector for UHE cosmic rays, tau neutrino and ANITA's anomalous events
- TAROGE-M station atop Mt. Melbourne
 - proof of concept in Antarctic mountain environment
 - ~30 day operation before power interruption in 2020
- Galactic noise observed
 - receiver calibrated
- drone cal. pulser at near-horizontal directions
 - 0.3° angular resolution
- CR candidates found → able to detect EeV air showers

Future works

- fulfil long-term operation in summer
 - replace problematic power parts with military-grade ones
- add two more Hpol for better angular resolution
- calibration below horizon
 - further scan with drone pulser (0° to -10°)
 - install ground-based pulser: continuous monitoring
- build more stations
 - other candidate sites at MtM

Thank you !