# The $\gamma$ -ray emission of 3HWC J1928+178







### **Armelle Jardin-Blicq**

Chiang Mai, Thailand

On behalf of the HAWC collaboration



# HAWC significance map



# 4 components model



|                                                                   | 3HWC J1928+178                         |
|-------------------------------------------------------------------|----------------------------------------|
| Angular size (39%, °)                                             | $0.18^o{\scriptstyle \pm 0.03}$        |
| Angular size (68%, °)                                             | $0.27^o{\scriptstyle \pm 0.03}$        |
| Diameter (pc)                                                     | ~ 41                                   |
| Energy flux [1-100TeV]<br>(erg cm <sup>-2</sup> s <sup>-1</sup> ) | $3.12 \pm 1.110^{-12}$                 |
| Spectral index                                                    | $\textbf{-2.09}{\scriptstyle\pm 0.15}$ |
| γ-ray luminosity (erg)                                            | ~ 7 10 <sup>33</sup>                   |
| Energy density (eV cm <sup>-3</sup> )                             | ~ 0.04                                 |









# Diffusion model



|                                    |                                                                   | 3HWC J1928+178                                |
|------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|
|                                    | Diffusion radius (°)                                              | $2.68^o{\scriptstyle\pm 0.3}$                 |
|                                    | Radius 68% emission (°)                                           | ~ 1.2                                         |
| - 14<br>- 12<br>- 10<br>- 8<br>- 6 | Radius 68% emission (pc)                                          | ~ 90                                          |
|                                    | Energy flux [1-100TeV]<br>(erg cm <sup>-2</sup> s <sup>-1</sup> ) | $4.6{\scriptstyle~\pm0.4}10{\scriptstyle-11}$ |
|                                    | Spectral index                                                    | $-2.58{\scriptstyle~\pm 0.05}$                |
| -4                                 | γ-ray luminosity (erg)                                            | ~ 1 10 <sup>35</sup>                          |
|                                    | Energy density (eV cm <sup>-3</sup> )                             | ~ 0.05                                        |



Flux ad a function of the distance d assuming continuous injection of  $e^{\pm}$ , with diffusion radius  $r_d$ ;

$$f_d = \frac{1.22}{\pi^{3/2} r_d (d + 0.06r_d)} ex$$

52°

 $52^{\circ}$ 



4

# Diffusion model



|   |                                                                   | 3HWC J1928+178                                | Geming                 |
|---|-------------------------------------------------------------------|-----------------------------------------------|------------------------|
|   | Diffusion radius (°)                                              | $2.68^o{\scriptstyle\pm0.3}$                  | $5.5^{\circ}_{\pm 0.}$ |
|   | Radius 68% emission (°)                                           | ~ 1.2                                         | ~ 3.5                  |
|   | Radius 68% emission (pc)                                          | ~ 90                                          | ~ 16                   |
|   | Energy flux [1-100TeV]<br>(erg cm <sup>-2</sup> s <sup>-1</sup> ) | $4.6{\scriptstyle~\pm0.4}10{\scriptstyle-11}$ | $5.6_{\pm 0.8}$ 10     |
|   | Spectral index                                                    | $-2.58{\scriptstyle~\pm 0.05}$                | $-2.34 \pm 0.00$       |
|   | γ-ray luminosity (erg)                                            | $\sim 1  10^{35}$                             | ~ 2.1 10               |
|   | Energy density (eV cm <sup>-3</sup> )                             | ~ 0.05                                        | ~ 0.01                 |
| 2 |                                                                   |                                               |                        |



Flux ad a function of the distance d assuming continuous injection of  $e^{\pm}$ , with diffusion radius  $r_d$ ;

$$f_d = \frac{1.22}{\pi^{3/2} r_d (d + 0.06r_d)} e_{d}$$

52°

 $52^{\circ}$ 

<u>Giacinti et al., 2020, A&A, 636, A113</u>







# Comparison with Geminga



<u>Giacinti et al., 2020, A&A, 636, A113</u>





# Spectrum



### Analysis bin 4 - 9

# Conclusions

The observed  $\gamma$ -ray emission from 3HWC J1928+178 can be described using 2 models 

4 components model

- $\sigma$  (68%) = 0.27°
- $\varepsilon = 0.04 \text{ eV cm}^{-3}$



- Is 3HWC J1928+178 a  $\gamma$ -ray halo candidate ? •
  - Powered by PSR J1928+1746 rather old pulsar •
  - No X-ray counterpart •
  - Extended  $\gamma$ -ray emission •
  - $\varepsilon_{IC} < \varepsilon_{ISM}$  (= ~ 1 eV cm<sup>-3</sup>) assuming IC scattering as  $\gamma$ -ray emission mechanism
  - The  $\gamma$ -ray emission possibly originates from e<sup>±</sup> cooling down and diffusing away from their source
- Extending the HAWC spectrum to ~100 TeV may help rejecting the diffusion model if no cut-off is observed
- Exploring other scenario : interaction with a molecular cloud





# Thank you for you attention







On behalf of the HAWC collaboration

### **Armelle Jardin-Blicq**

Chiang Mai, Thailand

