

Cosmic-ray beryllium isotope ratio measured by BESS-Polar II

T.Wada¹, K.Abe², H.Fuke¹, S.Haino³, T.Hams⁴, M. Hasegawa³, K.C.Kim⁵, M.H.Lee⁵, Y.Makida³, J.W.Mitchell⁴, J.Nishimura⁶, M.Nozaki³, R.Orito², J.F.Ormes⁷, K.Sakai⁴, M.Sasaki⁴, E.S.Seo⁵, R.E.Streitmatter⁴, N.Thankur⁴, A.Yamamoto³, T.Yoshida¹ and K.Yoshimura⁸ for the BESS Collaboration

- 1. ISAS/JAXA
- 2. Kobe University
- 3. High Energy Accelerator Research Organization (KEK)
- 4. NASA-Goddard Space Flight Center (NASA-GSFC)
- 5. IPST, University of Maryland
- 6. The University of Tokyo
- 7. University of Denver
- 8. Okayama University

Introduction

The flux ratio of secondary to primary

- The flux ratio of secondary/primary is most commonly used to constrain propagation models
- Provides important information such as
 - the average amount of interstellar material
 - the confinement time within the Galaxy
- □ The ratio of stable particles **cannot strongly** constrain the confinement time

The cosmic-ray isotope ratio

- Measuring the abundance of radioactive components is the most direct method to estimate the confinement time
- □ The most attractive one is **beryllium** (⁷Be, ⁹Be and ¹⁰Be(unstable))
- \square ¹⁰Be has a decay time of 1.4×10^6 year comparable to the confinement time
- □ ¹⁰Be/⁹Be ratio has not been reported, except for a few cases such as ISOMAX

The BESS Experiments

The Balloon-borne Experiment with a Superconducting Spectrometer

- \blacksquare International project to observe the low-energy cosmic rays (especially \overline{p})
- Since first flight in 1993, 11 flights including 2 flights over Antarctica (called the BESS-Polar) has successfully completed
- Fully developing instrument for the BESS-Polar
 - \rightarrow longer observation time, improved detector performance
- □ The second flight over Antarctica in 2007-2008 (BESS-Polar II)
 - → higher statistics, sufficient particle identification capability to identify beryllium isotopes.
- Use the BESS-Polar II data
 - for the beryllium analysis
- In this contribution,

report the analysis process of the Be isotope

The BESS-Polar II

Flight condition

- □ Launched on Dec. 22, 2007, Observation time: **24.5 days**
- □ Flight altitude 34-38 km (residual air ~5.8 g/cm² on average)
- □ Cutoff rigidity < 0.5 GV
- About 4.7 billion events

Instrument

- Uniform magnetic field (0.8 T) generated by a superconducting solenoid (~0.9 m diameter)
- Tracker on a concentric axis in a solenoid
 - ✓ Larger geometrical acceptance (0.23 m²sr)
 - ✓ Better rigidity resolution (0.4% at 1 GV)
- Time-of-flight counters, 10 in the upper (UTOF) and
 - 12 in the lower (LTOF) with a timing resolution of 120 $\ensuremath{\mathsf{ps}}$
- High-precision track reconstruction with JET chamber

Data Analysis

Track reconstruction

Only events with 1 hit each for UTOF and LTOF

and 1 reconstructed track

Fiducial cuts and quality cuts to obtain appropriate measurements

Mass reconstruction

$$M^2 = (ZeR)^2 \left(\frac{1}{\beta_{\rm UL}^2} - 1\right)$$

- *R* : Rigidity (momentum per charge), measured by the reconstructed particle track
- Ze : Charge, obtained from dE/dx measured by the TOF counters and the JET chamber
- $meta_{
 m UL}$: Velocity, derived from the time-of-flight and the path length between the UTOF and LTOF

Data Analysis

- □ The plots of UTOF dE/dx vs R under selection criteria applied
- □ Confirmed that the dE/dx, R and timing resolution for high-charge (Z ≥ 3)
 events were stable throughout the flight

Data Selection for Be Events

dE/dx-band cuts

- dE/dx with all cuts except itself against rigidity
- dE/dx-band is determined to reject the other elements events

Data Selection for Be Events

To Do List

¹⁰Be/⁹Be ratio at TOI

- Divide into several E_{kin} (TOI) ranges, perform fitting for the mass histograms
 Be isotope ratio at TOI is calculated
- Conversion from TOI to TOA is needed

Atmospheric correction

- Remove the effects of the residual atmosphere (the BESS-Polar II: ~5.8 g/cm²)
- Estimated by performing atmospheric MC simulation with data from GALPROP
- □ ¹⁰Be/⁹Be ratio at TOA is calculated by this correction

 \uparrow Quality cuts are not yet fully considered

Summary

□ We demonstrated that the BESS-Polar II has

- ✓ superior instrument performance to identify the high-charge (Z≥3) events
- ✓ enough statistics to calculate the Be isotope ratio
- Since the analysis method for determining the number of Be isotope events in the BESS-Polar II has been established, detailed analysis such as optimization of selection cuts is ongoing