Towards Understanding the Origin of Cosmic-Ray Positrons

<u>Zhili Weng / MIT</u>

on behalf of the AMS Collaboration

37th ICRC, July 2021

The Origins of Cosmic Positrons

Tracker and Magnet Measures the sign and

- magnitude of positrons and electrons to few TeV.
- Unique particle identification capability of AMS: **Independent Momentum and Energy measurement**

- **Identify electron charge confusion:** •
 - Large angle scattering,
 - Interaction with detector materials.
 - Identified and measured from data using Charge confusion estimator Λ_{CC}

Positron Measurement in AMS

• TRD: Identify e[±] from protons using transition radiation. Combine 20 layers proportional tubes signal: Λ_{TRD} .

TRD proton separation at different e^{\pm} efficiency

Positron Measurement in AMS

 ECAL: 17 X₀, TeV Precision 3D measurement of the energy and shower development of electrons and positrons.

TRD and ECAL are separated by the Magnet They have independent particle identification: combined rejection > 1 in 10⁶

Positron Measurement in AMS

- After selection by ECAL, number of e⁺ are obtained from a fit to data sample in ($\Lambda_{TRD} \Lambda_{CC}$) plane
- Precision determination of Signal and Background from Data
 - Positron Signal are clearly identified in the signal region of Λ_{TRD} and Λ_{CC}
 - Proton : identified by TRD estimator Λ_{TRD}
 - Electron charge confusion measured from data using Charge confusion estimator Λ_{CC}

Fit to Data, Positive Rigidity, 370 – 500 GeV

PHYSICAL REVIEW LETTERS 122, 041102 (2019)

Positron spectrum exhibits complex energy dependence

AMS Positron Measurements to uncharted Energy Range

Distinctive properties of Positron Spectrum

Distinctive properties of Positron Spectrum

The Origin of Cosmic Positrons

These distinct behavior can not be explained by traditional cosmic ray models.

Energy Cutoff of Positron Spectrum

The positron flux is the sum of low-energy part from cosmic ray collisions plus a high-energy part from pulsars or dark matter.

New Astrophysical Source: Pulsars

- Pulsars produce and accelerate positrons to high energies
- High energy positrons from pulsar imprints directional anisotropy
- Pulsars do not produce antiprotons.

ANALYSIS OF THE POSITRON ANISOTROPY

Measurement of the cosmic ray fluxes as function of the arrival direction in Galactic Coordinates

CRD, #995, Miguel Molero

Results consistent with isotropy

Amplitude of the dipole anisotropy on e^+ for 16 < E < 500 GeV $\delta < 1.65\%$ at the 95% C.L.

0.005±0.002

Positron and Antiproton have nearly identical rigidity dependence.

Positron-to-Antiproton ratio

The positron-to-antiproton flux ratio is independent of energy. Antiprotons cannot come from pulsars.

The Origin of Positrons at high energies Particle origin: Dark Matter

Positrons and Dark Matter Model by 2028

Conclusion and Outlooks

- Precision measurements by AMS of the positron flux to 1 TeV.
- The positron flux shows distinctive energy dependence: (a) a significant excess starting from 25.2±1.8 GeV (b) a sharp drop-off above 284 GeV,
- The positron flux is well described by the sum of a diffuse term and a new source term with a finite energy cutoff at 810 GeV, with a significance of more than 4σ .
- These properties are not explained by traditional CR models: An primary source of high energy positrons.
- By continuing the measurement through the live time of the Space Station, we will be able to improve the accuracy and extend to higher energy, and determine the origin of high energy positrons.