Search for dark matter annihilation signals from unidentified Fermi/LAT objects with H.E.S.S.

D. Malyshev^a, A. Montanari^b, E. Moulin^b, D. Glawion^c for the H.E.S.S. collaboration

a: Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany b: IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France C: ECAP, FAU Erlangen-Nürnberg, D-91058, Erlangen, Germany

Introduction and Motivation

- N-body computer simulations predict that MW-type galaxies harbor a population of unmerged DM subhalos. Most massive subhalos can host dwarf spheroidal galaxies, while the rest are dark at all wavelengths. The exact location of DM clumps is not known.
- In case of Weakly Interacting Massive Particles (WIMP) dark matter, WIMPs' selfannihilation in the subhalos can lead to the production of gamma-ray emission.
- Massive WIMPs (m_{DM} > 0.1 TeV) are characterized by a hard gamma-ray spectrum in GeV/TeV band. Without clear multiwavelength counterparts DM subhalos can appear as UnIdentified Objects (UFOs) in all-sky gamma-ray surveys, e.g. with Fermi/LAT.

Objects selection and Expected Signal

Name	RA	Dec.	TS for	Position	Pivot	Flux	Power-law	Ecut
			$E \ge 10 \text{ GeV}$	uncertainty	energy	at pivot energy	index	(95% c.l.)
	[degrees]	[degrees]		[arcmin]	[GeV]	$[10^{-13} \text{ TeV cm}^{-2} \text{s}^{-1}]$		[GeV]
3FHL J0929.2-4110	142.3345	-41.1833	36	2.4	0.39	0.12 ± 0.01	1.37 ± 0.07	> 33
3FHL J1915.2-1323 [†]	288.8182	-13.3916	23	3.0	62.8	2.1 ± 0.9	1.5 ± 0.4	> 35
3FHL J2030.2-5037	307.5901	-50.6344	40	2.6	6.3	1.9 ± 0.3	1.85 ± 0.1	> 67

- We searched in the 3FHL Fermi/LAT catalogue of sources detected above 10 GeV and selected sources missing radio-to-X-rays counterparts. We present the result of studies of these sources (see Table) in the TeV band with H.E.S.S. observatory.
- The expected signal from WIMP annihilation is

$$\frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E_{\gamma}}(E_{\gamma},\Delta\Omega) = \frac{\langle\sigma\nu\rangle}{8\pi m_{\mathrm{DM}}^2} \sum_{f} \mathrm{BR}_{f} \frac{\mathrm{d}N^{f}}{\mathrm{d}E_{\gamma}} J(\Delta\Omega) \,, \text{ with } J(\Delta\Omega) = \int_{\Delta\Omega} \int_{1.0.5.} \rho^{2}(s(r,\theta)) ds d\Omega \,.$$

 For W⁺W⁻ and τ⁺τ⁻ annihilation channels the signal is characterised by a cut-off powerlaw-like spectrum with a sharp cutoff at m_{DM}. The strength of the signal is determined by the product of velocity-averaged annihilation cross-section and J-factor of the clump. GeV/TeV observations allow direct measurement or constrainment of this factor as a function of m_{DM}.

Subhalos J-factors distribution

- Exact values of J-factors for DM subhalos are not not known, but statistics of J-factors distribution is known
- The probability for the MW-type galaxy to host 3 clumps with J>10²⁰ GeV²cm⁻⁵ is less than 5%

Derived Limits

(c): H.E.S.S. collaboration; arXiv:2106.00551, ApJ accepted

• Non-detection of the signal from UFOs with H.E.S.S. in the TeV band allowed to directly constrain the area $on\langle \sigma v \rangle J - m_{DM}$ plane for which these objects can be DM subhalos.

Conclusions and Discussion

- UFOs can represent DM subhalos only for a limited range of WIMP masses and (σν)J values for W⁺W⁻ and τ⁺τ⁻ annihilation channels.
- Assuming that WIMPs are characterised by thermal velocity-averged annihilation cross-section, m_{DM} and average J-factors can be strongly constrained:

 $\begin{array}{rll} W^{\scriptscriptstyle +}W^{\scriptscriptstyle -}:&m_{\rm DM}: [0.2-6] \ TeV; &J: [0.6-20] \ 10^{20} \ GeV^2 cm^{{\scriptscriptstyle -5}} \\ \tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}:&m_{\rm DM}: [0.2-6] \ TeV; &J: [0.7-7] \ 10^{20} \ GeV^2 cm^{{\scriptscriptstyle -5}} \end{array}$

- The mean expected upper limits for J-factors seen in N-body simulations barely allow only the lowest mass m_{DM} ~0.3 TeV DM UFOs interpretation.
- Given the large uncertainties in the distribution of J-factors in N-body simulations, we argue that the H.E.S.S. model-independent limits are the only relevant ones on the parameters of WIMP DM for which UFOs can represent subhalos of WIMP DM.

