The XY Scanner – A Versatile Method of the Absolute End-to-End Calibration of Fluorescence Detectors

Executive Summary

Christoph M. Schäfer^a for the Pierre Auger Collaboration^b

^a Institute for Astroparticle Physics, Karlsruhe Institute of Technology MT, Germany
^b Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

What is this contribution about?

A novel technique for an absolute end-to-end calibration of large-aperture fluorescence telescopes is presented. For this technique, a portable, calibrated light source mounted on a rail system (*XY-Scanner*) is moved across the aperture of the telescope.

Why is it relevant/interesting?

With this novel method the workload, time, and people needed for the absolute calibration of fluorescence telescopes can be reduced by a large margin. In addition, the versatile setup of the XY-Scanner allows the straightforward installation of basically any light source, which could be used to further study the imaging and aging properties of the telescopes.

What has been done?

We installed several XY-Scanner systems at the fluorescence telescopes of the Pierre Auger Observatory. The first measuring campaigns employing a modified general-purpose integrating sphere as light source were already performed and analyzed.

What is the result?

The analysis of the data taken during this first measuring campaigns indicates a reproducibility at a 1% level for this novel calibration technique over a time period of several months. The photon flux emitted by the light source can be estimated at a 3.5% accuracy level in a dedicated setup build in the laboratory.

