Study of the interaction of cosmic rays and the production of high-energy neutrinos in binary-neutron-star mergers

Simone Rossoni^a Denise Boncioli^{b,c} Günter Sigl^a

16 July 2021

International Cosmic Ray Conference 2021

a - University of Hamburg, Germany

- b University of L'Aquila, Italy
- c INFN LNGS, Italy

Simone Rossoni^a

BNS-mergers as neutrino sources

Environment

Shock acceleration with ejected matter in the merger.

Nuclei-kilonova interaction BB: $T = 10^4 \text{ K} \div 10^8 \text{ K}.$

Nuclei-non-thermal photon SED interaction.

Interaction region $\lambda_{\rm esc}(t) = \beta_{\rm ej} ct$, $\beta_{\rm ej} = 0.3$.

Environment evolution $\log(t) \simeq -0.5 \log(T) + 6.$

→ ∃ →

BNS-mergers as neutrino sources

Simone Rossoni^a Denise Boncioli^{b, c} Gi<mark>Study of the interaction of cosmic rays and t</mark>h

16 July 2021 3 / 12

Simulation code

SimProp v2r4

Monte Carlo code for the UHECRs extra-galactic propagation. Aloisio, R. et al, 2017

∜

Modified SimProp v2r4

Cosmic photons fields replaced by a BB of fixed temperature. Leaky box model for the CRs escape condition from the interaction region.

Simulation code

Several version of the same code for several phases of the "CR life".

A D N A B N A B N A B N

Simulations

Injection

- fixed source temperature
- energy spectrum $\propto \log(E)$
- protons with $10^{14} \, \mathrm{eV} \leq E_p \leq 10^{20} \, \mathrm{eV}$

Post re-weighing $J_{\rm inj}(E) \propto E^{-\gamma} \exp\left(-\frac{E/Z}{R_{\rm max}}\right)$

Simone Rossoni^a Denise Boncioli^{b, c} GiStudy of the interaction of cosmic rays and the

Source Model

Proton simulations $(1.5, 10^{17.5} \,\text{V}) \oplus (2.1, 10^{19} \,\text{V})$

Escaped protons

Escaped neutrinos

Earth propagation

Original SimProp v2r4 for the extra-galactic propagation

Set of sources

GW170817-like : $T = 10^6 \div 10^4 \text{ K}$ Optimistic : $T = 10^8 \div 10^4 \text{ K}$

Sources evolution

$$J_{\text{inj}}\left(E,z\right) = J_{\text{inj}}\left(E,z=0\right)\left(1+z\right)^{m}$$

Assumption: CRs fluxes normalized to the observed CRs flux with $E < E_{ankle}$.

Neutrino fluxes

Protons ,
$$\gamma=1.5$$
 , $R_{\max}=10^{18.5}\,\mathrm{V}$, $m=0$, GW-like

Simone Rossoni^a

Denise Boncioli^{b, c}

GiStudy of the interaction of cosmic rays and th

Neutrino fluxes

Protons ,
$$\gamma=1.5$$
 , ${\it R}_{
m max}=10^{18}\,{
m V}$, $m=3.4$, GW-like

Simone Rossoni^a

Denise Boncioli^{b, c} Gi

GiStudy of the interaction of cosmic rays and th

Neutrino fluxes

Protons ,
$$\gamma=2.1$$
 , $R_{\max}=10^{18}\,{
m V}$, $m=3.4$, GW-like

Results and Future developments

Results

- Cosmogenic neutrinos cannot be responsible of the observed diffuse neutrino flux.
- Nearby sources.
- Colder BNS mergers seem to be most favoured.
- Hard spectral index and and large rigidity better reproduce experimental results.

Future developments

- Mixed composition (heavier = non-thermal interactions).
- Hadronic interactions.
- Flavour oscillations.
- Population of BNS-merger.