Consequences of electron reflection back upstream in oblique shocks

PIC Simulations - Electron Injection - Upstream Turbulence

Paul Morris¹, Artem Bohdan¹, Martin Pohl^{1,2}

ICRC 2021 paul.morris@desy.de

 $\Omega_{i}t = 3.80$

 $\Omega_{i}t = 4.00$

 $\Omega_i t = 4.20$

• The above animation show an upstream electron (black) interacting with the electrostatic field (top: E_x , lower: E_y components). This field was generated by reflected electrons. The upstream electron gains energy in these directions and is turned away from the shock (left of animation) in the upstream region. Here, $\theta_{Bn} = 45^{\circ}$

P. J. Morris et al. | Reflected Electrons at Oblique Shocks

ICRC 2021 | paul.morris@desy.de

 $\Omega_{i}t = 4.40$

 $\Omega_{i}t = 4.60$

