# Neutron Star Mergers as Multi-Messenger Sources

### **Brian** Metzger





## ICRC 2021, Monday July 19, 2021

## Origin of the Elements, circa 2008









### Origin of the Elements, circa 2008









#### An Alchemist, (Jacob Toorenvliet, 1679)





### Gold 79 Protons, 118 Neutrons



### Go Where the Neutrons Are

Neutron Star

Credit: Chandra X-ray Observatory

# LIGO's First Neutron Star Merger

#### August 17, 2017 - GW170817



Frequency (Hz)

### Electromagnetic Follow-Up Campaign

SWOPE telescope (Las Campanas)



Dark Energy Camera (CTIO)





Fermi

identification of the host galaxy NGC 4993 at 40 Mpc!

#### Dark Energy Camera / CTIO i-band Time Relative to 2017 August 17

### +0.5 Days

Credit: P. S. Cowperthwaite / E. Berger Harvard-Smithsonian Center for Astrophysics

### What's inside a Neutron Star?

Maximum Mass?















## **GR** Hydro Simulation



Courtesy: David Radice, Wolfgang Kastaun, Filippo Galeazzi





BDM & Berger 12









### High Energy Neutrinos from GRB Jet

(e.g. Rachen & Meszaros 98; Murase & loka 2013; Globus et al. 2015; Xiao et al. 2017; Biehl et al. 2018; Kimura et al. 2018a)



- Relativistic particle acceleration from collisionless shocks within jet and during break-out.
- Neutrino production via pion/kaon decay (pγ & pp processes).





## Neutron-Rich Ejecta

"Dynamical"  $M_{ej} \sim 10^{-3} - 10^{-2} M_{\odot}$ t<sub>exp</sub> ~ milliseconds v<sub>ei</sub> ~ 0.3 c **Disk Winds**  $M_{ej} \sim 10^{-2} - 10^{-1} M_{\odot}$ t<sub>exp</sub> ~ seconds v<sub>ei</sub> ~ 0.1 c





# **Black Holes are Fussy Eaters**





#### **R-Process Network** (neutron captures, photo-dissociations, $\alpha$ - and $\beta$ -decays, fission)



Courtesy Gabriel Martinez-Pinedo

## Radioactive Heating of Ejecta





#### Dark Energy Camera / CTIO i-band Time Relative to 2017 August 17

### +0.5 Days

Credit: P. S. Cowperthwaite / E. Berger Harvard-Smithsonian Center for Astrophysics





### Kilonova Colors Reveal Ejecta Composition



### Kilonova Colors Reveal Ejecta Composition

















### Outcomes of Neutron Star Merger "prompt collapse" Mrol 7 1.3.1.6 Minax , + torus "hypermassive NS" NS (~0.1 M<sub>☉</sub>) t ~ 100 ms inspiral merger $M_{tot} < 1.2 M_{max}$ NS binary mass, "supramassive NS" $M_{\text{tot}} = 2.74^{+0.04}_{-0.01} M_{\odot}$ E<sub>rot</sub> ~ 10<sup>52</sup>-10<sup>53</sup> erg













### 3.4 years later: X-rays are still there!

Haleja+21; see also Balasubramanian+21 Troja+21



Figure 1 | Combined images of GW170817 at  $\delta t \sim 3.4$  years: Left Panel: Combined X-ray image consisting of CXO observations spanning  $\delta t \sim 1209 - 1258$  days in the 0.5 - 8 keV energy range. An X-ray source is clearly detected at the location of GW170817 with statistical significance of  $7.2 \sigma$  (Extended Data Table 1). Right Panel: Combined radio image comprising VLA 3 GHz observations acquired in the time range  $\delta t \sim 1216 - 1265$  days. No radio emission is detected at the location of GW170817. The RMS noise around the location of the BNS merger is  $\sim 1.7 \mu$ Jy (§2). In both panels the orange and light-blue regions have a 1" and 2.5" radius, respectively, and mark the location of the BNS merger and its host galaxy.

...but radio has continued to fade => change in spectral slope or new emission component











### X-rays from Black Hole Accretion Disk

see also Ishizaka+21

$$L_{X} \sim 5 \times 10^{38} \text{ erg s}^{-1} \sim L_{Edd} = \frac{4\pi G M_{\bullet} c}{\kappa_{es}} \approx 8 \times 10^{38} \left(\frac{M_{\bullet}}{2.5 M_{\odot}}\right) \text{ erg s}^{-1}$$

**Disk Emission Temperature** 

$$kT_{\rm eff} \simeq 2 \,\mathrm{keV} \left(\frac{f_{\rm b}}{0.1}\right)^{1/4} \left(\frac{L_{\rm X}}{5 \times 10^{38} \mathrm{erg}\,\mathrm{s}^{-1}}\right)^{1/4} \left(\frac{M_{ullet}}{2.5M_{\odot}}\right)^{-1/2}$$



### Neutrino- to Photon-Cooled in 3 Years



## The Future is Loud!



More Mergers on the Horizon (O4, LIGO A+)...

- Similar events, observed from different angles
- Different ingoing binary properties => diverse outcomes
- NS-BH mergers, with and without EM counterparts



# LIGO's 2<sup>nd</sup> BNS Merger: GW190425







### **Magnetar-Boosted Kilonova**

1.



#### Magnetar-Boosted Kilonova 3. 1. neutral ejecta ionized ejecta Late-time radio upper limits $10^{46}$ 0 GRB 200522A $M_{\rm ej}=0.03~M_{\odot}$ , $E_{\rm ej}=10^{53}~{ m erg}$ 0 Fong+20 $10^{45}$ L<sub>X,nebula</sub> Schroeder+20 32 $10^{44}$ $(10^{-10} \text{ erg s}^{-1})^{-10}$ optical luminosity log<sub>10</sub> (L<sub>v</sub> / erg s<sup>-1</sup> Hz<sup>-1</sup>) ~10x higher than GW170817 🕁 F125W $10^{42}$ ♦ F160W×1/2 **0** 1 keV $10^{41}$ L<sub>KN</sub>/L bol,KN This work 5-6 GHz $\nabla$ $\nabla$ 1-3 GHz $\nabla$ GRB 170817 $\nabla$ 10<sup>-3</sup> 10<sup>-1</sup> $10^{0}$ 10<sup>-2</sup> $10^{1}$ 24 $\delta t_{rest}$ (days)

### **Neutrinos from Magnetar Nebula**

(e.g. Murase+09; Gao+13; Fang+14, Fang & BDM 17)



D = 10 Mpc



### Neutron Star-Black Hole Mergers



### Neutron Star-Black Hole Mergers





## Multi-Messenger Merger Timeline



Fernandez & BDM 2016

## Multi-Messenger Merger Timeline



Fernandez & BDM 2016