

The CoMET multiperspective event tracker for wide field-of-view gamma-ray astronomy

Gašper Kukec Mezek¹ on behalf of the COMET collaboration

Yvonne Becherini¹, Michael Punch^{1,2}, Jean-Pierre Ernenwein³, Satyendra Thoudam⁴, Ahmed Saleh⁴, Tomas Bylund¹, Mohanraj Senniappan¹, Patrizia Romano⁵, Stefano Vercellone⁵, Martin Tluczykont⁶

¹Linnaeus University, Sweden, ²Université de Paris, CNRS, Astroparticule et Cosmologie, France, ³Aix Marseille Univ, CNRS/IN2P3, CPPM, France, ⁴Khalifa University, United Arab Emirates, ⁵INAF-Osservatorio Astronomico di Brera, Italy, ⁶Universität Hamburg, Germany

Linnæus University

ICRC 2021 (online) - 16th July 2021

CoMET: Introduction

ALTO: Particle detector array with 1242 detector units (water-Cherenkov and scintillation detector).

CoMET: Extension to the ALTO array by adding atmospheric Cherenkov Light Collectors (CLiC).

The CoMET R&D project is dedicated to observing very-high-energy extragalactic gamma-ray sources (200 GeV – 100 TeV).

CoMET

<u>CLiC</u>

Atmospheric Cherenkov light observations only available during clear nights

Smaller field-of-view of CLiCs (~ 0.8 steradian)

Aim to further improve angular resolution

The key features of <u>ALTO</u> include,

Regular monitoring

At high altitude (> 5 km)

Excellent timing accuracy

Wide field-of-view

Modular design

Long duration

Simple to construct

Open Observatory

 \rightarrow Observations may be done 24h per day

 \rightarrow Improved angular resolution (~ 0.1° at few TeV)

 \rightarrow Phased construction and easy maintenance

 \rightarrow Minimize human intervention at high-altitude

 \rightarrow ~ 2 steradian -

 \rightarrow Low threshold E \geq 200 GeV

 \rightarrow Should operate for 30 years

 \rightarrow Distribute data to the community

Linnæus University

ICRC 2021 (online) - 16th July 2021

CoMET array (ALTO + CLiC)

- 1242 ALTO units + 414 CLiC detectors
- CLiC inspired by the HiSCORE wide field-of-view detector (four 8" PMTs → eight 3" PMTs)
- CLiC stations read-out by coincidence with particle detectors in corresponding cluster

[4] doi:10.1016/j.nima.2016.08.031

Linnæus University

ICRC 2021 (online) - 16th July 2021

4

X distance from detector center (cm)

Atmospheric Cherenkov light simulations

Linnæus University

ICRC 2021 (online) - 16th July 2021

Linnæus University

ICRC 2021 (online) - 16th July 2021

Preliminary SEMLA results for CoMET

Analysis performed with the SEMLA [5] procedure:

- Adding CLiC observables into the machine learning structure of SEMLA:
 - Stage B (cutting badly reconstructed events): Parabolic fit χ^2_{parab} , LDF slope p_{R}
 - Stage C (gamma/hadron separation): p_{R} , LDF value at 60 m p_{60}
 - Stage D (energy reconstruction): p_{60} , number of detected photo-electrons N_{pe}
- Improvement seen in all stages of SEMLA: 10% (angular resolution), 30% at 1 TeV (energy resolution), 12% less background, loss of only 1% of gamma-rays

Linnæus University

ICRC 2021 (online) - 16th July 2021

[5] arXiv:2105.06728

Prototype at Linnaeus University

Atmospheric Cherenkov light prototypes:

- 4 PMT CLiC pre-prototype, September 2020
- 1 PMT mini-HiSCORE (4 detectors), 2020 – 2021
- 8 PMT CLiC detector prototype, installation in Summer 2021

Linnæus University

ICRC 2021 (online) - 16th July 2021

mini-HiSCORE

Prototype at Linnaeus University

First measurements with CLiC pre-prototype (23. and 24. Sep 2020):

- Signals correlated with water-Cherenkov particle detectors
- Improved gain and lower noise (compared to mini-HiSCORE)
- Closed vs. open lid measurements show particles passing through the filter and PMT glass (high sensitivity)

Linnæus University

ICRC 2021 (online) - 16th July 2021

9

CLiC pre-prototype amplitude

Low amplitude

signals polluted

by NSB

A<-8mV

A<-20mV

A<-30mV

Signal

coincidence

with particles

1500

1000

Conclusions

- CoMET dedicated to soft-spectrum sources, and sensitive in the energy range 200 GeV - 100 TeV
- **Key idea:** during darkness couple atmospheric Cherenkov light signals to particle detector signals from atmospheric showers for a <u>better gamma/hadron separation</u> and a <u>better source</u> <u>localisation</u>
- Confirmation of the hypothesis (preliminary results):
 - Adding four new CLiC observables improved all stages of the SEMLA analysis
 - Improvement to angular resolution, energy reconstruction and background suppression
 - Clear improvement at [600 GeV, 6 TeV]
- Prototype activities:
 - New CLiC design has good sensitivity and reduced night sky background (NSB)
 - Full CLiC detector prototype measurements to follow in Autumn-Winter 2021-2022

Thank you for your attention

Linnæus University

