

Analysis of the W 44 Supernova Remnant and its surroundings with *Fermi*-LAT and MAGIC

Di Tria R.¹, <u>Di Venere L.</u>¹, Giordano F.¹, Green D.², Hahn A.², Pantaleo F.R.¹, Strzys M.³

¹University & INFN Bari

²MPP Munich

³ICRR Tokyo

37th International Cosmic Ray Conference 2021

Virtual

Context and motivation

- Supernova Remnants (SNRs) play a central role in the puzzle of Cosmic Ray origin
- W44 is one of the most luminous SNR in the GeV sky
- Previous works revealed the presence of GeV emissions in the SNR surroundings
 - Probably due to escaped CRs
- This work:
 - Detailed spatial analysis of W44 region with Fermi-LAT
 - Observations of W44 surroundings with MAGIC telescopes

Fermi-LAT analysis

- Fermi-LAT is sensitive to gamma-rays from tens of MeV to few TeV
- Data selection:
 - 142 months of data (~12 years), SOURCE class
 - 15° Rol centered on W44
 - Energy range: 1 GeV 2TeV
 - Maximum zenith angle: 105°
- Analysis setup
 - Galactic and Isotropic background models
 - Sources within 20° from ROI center from 4FGL-DR2 catalog
 - Summed likelihood with PSF event types
 - *fermitools* v2.0.8 and *fermipy* v1.0.1 packages

Morphological analysis

- W44 morphology investigated adopting several templates:
 - 4FGL-DR2 catalog template, having an elliptical ring (Abdo+10 Science, 327)
 - Full ellipse template
 - Radio (1420 MHz) template
 - Catalog and elliptical templates divided along the major axis and fitted separately
- Analysis procedure:
 - All known sources within 1° from W44 center were removed
 - Source-find algorithm to search for new sources
 - Extension test with a disk morphology (compared to a point-like source)

$$TS_{ext} = 2\left(\log L_{disk} - \log L_{ps}\right)$$

• Curvature test with a log-parabola spectrum (compared to a simple power-law spectrum) $TS = -2 (\log L_{12} - \log L_{22})$

$$TS_{curv} = 2\left(\log L_{logP} - \log L_{PL}\right)$$

• Akaike Information Criterion (AIC) used to compared different models:

$$AIC = \frac{1}{2} \sqrt{2} k_{e} \frac{1}{L} - \frac{1}{2} R ln_{0}(\hat{L})$$

Morphological analysis – W44 template

- W44 elliptical template fitted varying the semi-major and semi-minor axes and the inclination angle of the ellipse
 - Best-fit value: (a,b,θ)=(0.41,0.23,115°)
- AIC used to compare all templates
 - <u>Radio template provided the best result</u>

Template (W 44)	lnL	k (d.o.f.)	AIC	Δ_{AIC}
4FGL	57702	18	-115368	289
4FGL divided	57755	25	-115460	197
Full ellipse	57743	18	-115450	207
Full ellipse divided	57770	20	-115501	156
Radio (1420 MHz)	57856	27	-115657	0

Morphological analysis – W44 surroundings

Salactic Latitude

Deviation probability map

- Radio (1420 MHz) template used for W44
- Two small extended sources (disk) found close to W44, coincident with previously detected sources
- One large diffuse disk
 - Likely associated with CO emission •
 - CO template derived from NRO FUGIN • survey and tested instead of the large disk \rightarrow diffuse disk is statistically preferred with a $\Delta AIC=10.6$

Spectral analysis

- Spectral Energy Distribution (SED) for W44 and surrounding sources
 - 8 bins/decade for $E \leq 30 \text{ GeV}$
 - 4 bins/decade for E > 30 GeV
- Results compatible with previous papers

MAGIC observations

- Time of observations: April 2013 August 2014 for 173.7 h after quality cuts
- Zenith angle: 25°–45°
- Centered on the coordinates of NW source from Uchiyama+12
- Standard wobble distance: 0.4°
- Software:
 - MAGIC Analysis and Reconstruction Software (MARS) for low level analysis
 - *SkyPrism* for high-level analysis (spatial likelihood analysis)
- Background camera exposure model derived using an Exclusion Map
 - known sources in our field of view excluded
 - HESS J1857+026 with a radius of 0.45°, including MAGIC J1857.2+0263 and MAGIC J1857.6+0297
 - HESS J1858+020 with a radius of 0.17°,
 - NW and SE sources with their position and extension from the Fermi-LAT analysis
 - W44 and large diffuse disk were not excluded nor modeled due to their curved spectra in the GeV range

MAGIC results

- We searched for a signal originating from the NW source, using the spatial information from our previous *Fermi*-LAT analysis
- No significant detection was found
- Upper limits at 95% confidence level were derived in SED
- Upper limits are compatible with CR diffusion¹⁰⁻³ hypothesis (Uchiyama+12)
- Constraints on the CR diffusion coefficient can be derived

Summary and Outlook

- We have analysed W44 region with *Fermi*-LAT and MAGIC telescopes
- A careful morphological analysis of the W44 region was carried on with *Fermi*-LAT for energies above 1 GeV
- Observations in the VHE gamma-rays were carried out with MAGIC telescopes focusing on the NW emission in the W44 surroundings
- No significant detection was found but constraining upper limits were derived
- Study on the CR diffusion coefficient in the hypothesis of escaped CR already ongoing