Simulation of the propagation of CR air shower cores in ice

Simon De Kockere simondekockere@gmail.com

ICRC 2021

Introduction

• Development of radio neutrino observatories to extend flux measurements to higher energies

Figure: RNO-G collaboration, JINST 16, P03025 (2021)

Introduction

- Important **background** signal: cosmic ray air showers
 - ▶ In-air radio emission (geomagnetic, Askaryan)
 - In-ice radio emission (Askaryan)
- Useful as **in-situ calibration** source
- Detailed study of in-ice propagation and radio emission is needed

Overview

- Simulation setup
- Simulation results
 - Deposited energy
 - Shower development
 - Charge distribution
- Applications
 - Askaryan radio emission
 - RADAR reflection techniques

Simulation setup

Simulation setup

- Simulation of in-air particle development using CORSIKA
 - QGSJETII-04, GHEISHA 2002d
 - Minor amount of thinning ($E_p \ge 10^{17} \text{ eV}$)
 - Particle read-out at altitude of 2.4 km
- Simulation of in-ice propagation using **Geant4**

 - Using realistic ice density gradient

Cosmic-ray air showers moving into high-altitude ice layers

- Showers with $E_p \ge 10^{16}$ eV typically reach Polar ice sheets close to shower max
- Have very energy dense core, which will propagate through ice
- Example shower (proton, $E_p = 10^{17}$ eV, $\theta = 0$, $X_{max} = 680$ g/cm²)

Simulation results

Deposited energy density

- Energy highly concentrated around core (~ 10 cm), resembling neutrino induced particle cascade
- Shower core is still developing

Shower development

- Propagation through ice does not influence development of electromagnetic part
- Standard air shower parameterizations (e.g. Gaisser-Hillas) can be used

Charge distribution

- Thin disk (\sim 1–10 mm)
- Lateral dimension is relevant dimension when studying radio emission
- $w_1(r)dr$ = number of charges in [r, r + dr[(normalized)

Charge distribution

- 10 different shower sets, 10^{16} eV 10^{18} eV, 0° 30°
- Group showers based on X_{max} and calculate average $w_1(r)$ distribution for each group
- Higher X_{max} value results in sharper peak in $w_1(r)$ distribution

Charge distribution

• Distributions can be well described by analytical expression:

$$W(r) = a\sqrt{r}e^{-(r/b)^c}$$

10/14

Applications

Radio emission

• Using end-point formalism to get first estimate of in-ice radio emission $_{\vec{\beta}^*}$

Contribution to the electric field in the antenna at t = R/(c/n) for starting point (+) and end point (-):

<u>Â</u><u>R</u>

$$ec{E}_{\pm}(ec{x},t) = \pm rac{1}{\Delta t} rac{q}{c} \left(rac{\hat{r} imes [\hat{r} imes ec{eta}^*]}{|1 - nec{eta}^* \cdot \hat{r}|R}
ight)$$

- Same formalism also used in CoREAS (radio extension of CORSIKA), and PhD thesis of Anne Zilles (ISBN 978-3-319-63411-1)
- Assumes constant index of refraction *n*, which might be oversimplification for top layer of natural ice

Radio emission

- Antenna 150 m deep in the ice (z = -150 m), at horizontal distance of 160 m from point of impact (x = -160 m)
- Bipolar, radial polarized signal (Askaryan)

• Well above typical detection thresholds of 10-100 μ V/m (antenna convolution forseen for future work)

Plasma properties

- Shower core creates dense plasma in the ice
- Plasma can be detected using RADAR reflection techniques (see also RET contributions 102154, 101376 and others)
- Estimation of plasma frequency ω_p :

$$\omega_p = 8980 \sqrt{n_q} [{
m cm}^{-3}]$$
 Hz; $n_q =
ho_E / ({
m 50 \ eV})$

• Rule of thumb: signals with $\omega < \omega_p$ will be reflected

- Cosmic-ray air showers with $E_p \ge 10^{16}$ eV have very energy dense cores at typical altitudes of polar ice sheets
- Shower development: electromagnetic depth profile does not change when propagating through ice
- Charge distribution: thin disk, radial charge distribution can be parameterized in function of X_{max}
- Expect Askaryan radio emission to be detectable
- Plasma in ice sufficiently dense for a realistic RADAR setup