SEARCH FOR AXION-LIKE PARTICLE INDUCED γ-RAY BURSTS

U
iti FROM CORE COLLAPSE SUPERNOVAE WITH THE FERMI-LAT [PRL, VOL. 124, 23, 231101 (2020), ARXIV:2006.06722]
MANUEL MEYER \& TANJA PETRUSHEVSKA FOR THE FERMI-LAT COLLABORATION JULY, 2021
ICRC 2021^{1}
MANUEL.MEYER@DESY.DE

WHAT IS THE PARTICLE NATURE OF DARK MATTER?

MSSM

MASS OF DARK MATTER UNKNOWN!

$B \approx 1 \mu \mathrm{G}$
 $L=10 \mathrm{kpc}$ $P_{a i} \approx 0.1$ $A \approx 0.5 \mathrm{~m}^{2}$

B

FERMI LARGE AREA TELESCOPE (LAT) $30 \mathrm{MeV} \lesssim E \lesssim 1 \mathrm{TeV}$

$\phi \approx 4 \times 10^{7}$ photons s ${ }^{-1}$

CORE COLLAPSE SN RATE IN MILKY WAY ~ 3\% PER YEAR LAT OBSERVERS ~20\% OF THE SKY
$\rightarrow 2 \%$ CHANCE TO CATCH AT LEAST ONE SUCH EVENT IF LAT OPERATES FOR 3 MORE YEARS

LOOK FOR EXTRAGALACTIC SUPERNOVAE INSTEAD

- But no neutrino signal!
- Use optical light curves to estimate explosion times [e.g. Cowen et al. 2010]
- Possible with light curves from surveys such as ASAS-SN, iPTF, ZTF, TESS Satellite, Rubin Observatory

Lien \& Fields 2009

OPTICAL SN SAMPLE

- Data from open supernova catalog www.sne.space [Guillochon et al. 2018]
- Core collapse SN of type lb/c (predicted short delay between core collapse and optical emission)
- Closer than $z \lesssim 0.05$ with well sampled light curve
- Detected after Fermi launch
- Gives 20 SNe until 2018

SN	R.A. (deg)	Dec. (deg)	Redshift
SN2009bb	157.891	-39.958	0.0104
SN2009iz	40.564	42.397	0.014
SN2009jf	346.221	12.333	0.0079
SN2010bh	107.632	-56.256	0.0593
SN2010et	259.225	31.564	0.023
SN2011bm	194.225	22.375	0.022
SN2012P	224.996	1.890	0.004506
SN2012ap	75.057	-3.348	0.01224
PTF12gzk	333.173	0.512	0.01377
iPTF13bvn	225.001	1.881	0.00449
SN2013ge	158.702	21.662	0.004356
SN2014L	184.703	14.412	0.008029
SN2014ad	179.435	-10.171	0.0057
SN2015ap	31.306	6.102	0.01138
PTF15dtg	37.584	37.235	0.0524
SN2016bau	170.246	53.174	0.003856
SN2016blz	235.122	0.910	0.01173
SN2016coi	329.767	18.186	0.003646
SN2017ein	178.222	44.124	0.002699
SN2017fwm	288.217	-60.383	0.015557

DETERMINING THE OPTICAL EXPLOSION TIME

Marginalized

posterior
for explosion time

- Light curve fitted with MOSFiT package [Guillochon et al. 2018]

GAMMA-RAY ANALYSIS PROCEDURE

SN2017ein

```
FERMI LAT FLUX UPPER
    LIMITS
```


CONSTRAINTS FROM ONE SN

COMBINED LIMITS FROM SAMPLE OF 20 SNe

$$
P\left(N_{\mathrm{obs}} \geqslant 1\right)=1-\prod\left(1-p_{\mathrm{obs}, i}\right) \approx 89 \%
$$

SNe SAMPLE IS GROWING!

- ZTF, ASAS-SN and other surveys are already observing
- Vera Rubin Observatory will see first light in 2023
- TESS satellite provides high cadence light curves for some SNe

CONCLUSIONS

- γ-ray burst signal at tens of MeV co-incident with neutrinos \rightarrow smoking gun for ALPs!
- For extragalactic SNe: Core-collapse time can be estimated from optical light curves
- Fermi LAT all-sky survey very well suited to search for such a signal
- Many new SNe will be detected with optical surveys in the near future

BACK UP

PHOTON-ALP PARAMETER SPACE

PHOTON-AXION/ALP MIXING

IN A COHERENT MAGNETIC FIELD
$B=1 \mu \mathrm{G}, \mathrm{L}=10 \mathrm{kpc}$

Suppression due to momentum mismatch because of non-zero ALP mass, $m_{a}>0$

Suppression due to photon-photon dispersion with external magnetic field and background radiation fields
[Östman \& Mörtsell 2005;
Hooper \& Serpico 2007;
Hochmuth \& Sigl 2007;
De Angelis et al. 2008;
Wouters \& Brun 2012,2013;

Liang et al. 2018;
Malyshev et al. 2018;
Majumdar et al. 2018;

SN CONSTRAINTS WITH DIFFERENT MODEL ASSUMPTIONS

PROJECTION OF SN CONSTRAINTS

GAMMA-RAY ANALYSIS PROCEDURE

- Add SN to ROI model assuming ALP model
- Calculate gamma-ray light curve ± 30 days around SN discovery date with one time bin per orbit ($\sim 2 \times 30 \times 24 / 1.5=960$ orbits)
- For each orbit: derive SED and log likelihood curve in each energy bin

LIKELIHOOD FORMULATION

$$
\begin{aligned}
& \text { Gamma-ray likelihood: multiplied over energy bins, } \\
& \text { depends on ALP parameters, progenitor mass } M, B \\
& \text { field, nuisance parameters for background sources and } \\
& \text { time } t_{\text {exp }} \\
& \mathscr{L}\left(m_{a}, g_{a r} t_{\text {exp }, j} \boldsymbol{\theta} \mid \mathbf{D}_{\gamma}\right)=\left(\prod_{\Delta E_{i}} \mathscr{L}_{\gamma, i}\left(m_{a}, g_{a \gamma}, t_{\text {exp.j }}, M, \mathbf{B}, \boldsymbol{\theta}_{\gamma} \mid \mathbf{D}_{\gamma}\right)\right.
\end{aligned}
$$

Consider GTIs such that $t_{\text {exp. } j} \in \boldsymbol{\Delta} t$ with $\pi\left(\mathbf{D}_{\text {optical }} \mid \boldsymbol{\theta}_{\text {optical }}\right) d t=0.95$

Convolved marginalized posterior integrated over time

Gives trials factor equal to the number of orbits inside $\boldsymbol{\Delta} t$

LOG LIKELIHOOD RATIO TESTS FOR SOURCE DETECTION AND SETTING LIMITS

In analogy to WIMP searches: step through mass m_{a}

$$
\begin{aligned}
& T S_{j}=-2 \ln \left(\frac{\mathscr{L}\left(m_{a}, g_{a \gamma}=0, t_{\mathrm{exp}, j}, \widehat{\boldsymbol{\theta}}\right)}{\mathscr{L}\left(m_{a}, \widehat{\widehat{g_{a \gamma}}}, t_{\mathrm{exp}, j}, \widehat{\widehat{\boldsymbol{\theta}})}\right.}\right) \\
& \text { Select orbit (} \tilde{f}_{\text {exp }} \text {) with highest } \\
& \text { TS for best fit / setting limits: } \\
& \lambda\left(m_{a}, g_{a y}\right)=-2 \ln \left(\frac{\mathscr{L}\left(m_{a}, g_{a y}, \tilde{t}_{\mathrm{exp}}, \widehat{\boldsymbol{\theta}}\right)}{\mathscr{L}\left(m_{a}, \widehat{\widehat{g_{a y}}}, \tilde{t}_{\mathrm{exp}}, \widehat{\widehat{\boldsymbol{\theta}})}\right.}\right)
\end{aligned}
$$

RESULTS FOR COVERAGE TEST

- Coverage =
(number of times true signal in confidence interval) / (number of simulations)
- bin-by-bin likelihood gives correct coverage for small TS values, upper limits can be trusted. For high TS values: likelihood curves become extremely steep, hard to interpolate correctly, leading to under-coverage
- Science tools analysis gives under-coverage for small TS values, i.e., fits do not recover weak signal. For high TS values, coverage as expected, injected signal recovered
- Conclusion: bin-by-bin method works fine, limits can be trusted, reconstructed signals close to injected ones even for high TS, but in that case we would conduct a science tools analysis anyway

THE STRONG CP PROBLEM

- Theory of strong force (OCD) predicts electric dipole moment of the neutron with strength $\theta \in[-\pi, \pi]$
- Calculation: $\left|d_{n}\right| \approx 2.4 \times 10^{-16} \theta e \mathrm{~cm}$
- Measurement [Abel et al. 2020]: $\left|d_{n}\right|<1.8 \times 10^{-26} \mathrm{e} \mathrm{cm}$
- $\Rightarrow|\theta|<0.8 \times 10^{-10}$

AXION SOLVES THE STRONG CP PROBLEM

- $\theta \longrightarrow a / f_{a}$ with scalar field a and scale f_{a}
- Potential $V(a)$ generated by QCD, axion acquires mass

$$
m_{a} \approx 10^{-9} \mathrm{eV}\left(\frac{10^{16} \mathrm{GeV}}{f_{a}}\right)
$$

AXIONLIKE PARTICLES (ALPs)

- QCD axion: $m_{a} \sim 1 / f_{a}$
- Axionlike particles: m_{a} and f_{a} independent parameters
- Predicted in several extensions of the standard model (Majoron, Familon, String Theory ...)
[Chikashige et al. 78; Langacker et al. 86; Wilczek 82, Witten 84; Conlon 06; Arvanitaki et al. 09; Acharya et al. 10; Cicoli et al. 12, see also Jaeckel \& Ringwald 10, Irastorza \& Redondo 18 for reviews]
- Do not solve the strong CP problem

EVOLUTION OF AXION/ALP FIELD IN AN EXPANDING UNIVERSE

$$
\ddot{a}+3 H \dot{a}+m_{a}^{2} a=0
$$

