SEARCH FOR AXION-LIKE PARTICLE INDUCED γ-RAY BURSTS FROM CORE COLLAPSE <u>SUPERNOVAE WITH THE FERMI-LAT</u>

[PRL, VOL. 124, 23, 231101 (2020), <u>ARXIV:2006.06722</u>]

MANUEL MEYER & TANJA PETRUSHEVSKA FOR THE FERMI-LAT COLLABORATION

JULY, 2021 ICRC 2021 MANUEL.MEYER@DESY.DE

WHAT IS THE PARTICLE NATURE OF DARK MATTER?

 $B \approx 1 \,\mu\text{G}$ $L = 10 \,\text{kpc}$ $P_{a\gamma} \approx 0.1$ $A \approx 0.5 \,\text{m}^2$

a,

FERMI LARGE AREA TELESCOPE (LAT) $30 \,\mathrm{MeV} \lesssim E \lesssim 1 \,\mathrm{TeV}$

B

 $\phi \approx 4 \times 10^7$ photons s⁻¹ (for 20 seconds, scales as $g_{a\gamma}^4$)

CORE COLLAPSE SN RATE IN MILKY WAY ~ 3% PER YEAR

LAT OBSERVERS ~20% OF THE SKY

→ 2% CHANCE TO CATCH AT LEAST ONE SUCH EVENT IF LAT OPERATES FOR 3 MORE YEARS

LOOK FOR EXTRAGALACTIC SUPERNOVAE INSTEAD

- But no neutrino signal!
- Use optical light curves to estimate explosion times [e.g. Cowen et al. 2010]
- Possible with light curves from surveys such as ASAS-SN,
 iPTF, ZTF, TESS Satellite, Rubin
 Observatory

Lien & Fields 2009

OPTICAL SN SAMPLE

- Data from open supernova catalog <u>www.sne.space</u>
 [Guillochon et al. 2018]
- Core collapse SN of type lb/c (predicted short delay between core collapse and optical emission)
- Closer than $z \lesssim 0.05$ with well sampled light curve
- Detected after Fermi launch
- Gives 20 SNe until 2018

SN	R.A. (deg)	Dec. (deg)	Redshift
SN2009bb	157.891	-39.958	0.0104
SN2009iz	40.564	42.397	0.014
SN2009jf	346.221	12.333	0.0079
SN2010bh	107.632	-56.256	0.0593
SN2010et	259.225	31.564	0.023
SN2011bm	194.225	22.375	0.022
SN2012P	224.996	1.890	0.004506
SN2012ap	75.057	-3.348	0.01224
PTF12gzk	333.173	0.512	0.01377
iPTF13bvn	225.001	1.881	0.00449
SN2013ge	158.702	21.662	0.004356
SN2014L	184.703	14.412	0.008029
SN2014ad	179.435	-10.171	0.0057
SN2015ap	31.306	6.102	0.01138
PTF15dtg	37.584	37.235	0.0524
SN2016bau	170.246	53.174	0.003856
SN2016blz	235.122	0.910	0.01173
SN2016coi	329.767	18.186	0.003646
SN2017ein	178.222	44.124	0.002699
SN2017 fwm	288.217	-60.383	0.015557

DETERMINING THE OPTICAL EXPLOSION TIME

Marginalized posterior for explosion time

 Light curve fitted with <u>MOSFiT</u>
 package
 [Guillochon et al. 2018]

GAMMA-RAY ANALYSIS PROCEDURE

FERMI LAT FLUX UPPER LIMITS

CONSTRAINTS FROM ONE SN

COMBINED LIMITS FROM SAMPLE OF 20 SNe

10

SNe SAMPLE IS GROWING!

- ZTF, ASAS-SN and other surveys are already observing
- Vera Rubin Observatory will see first light in 2023
- TESS satellite provides high cadence light curves for some SNe

[Vallely et el. 2021]

CONCLUSIONS

- γ -ray burst signal at tens of MeV co-incident with neutrinos \rightarrow smoking gun for ALPs!
- For extragalactic SNe: Core-collapse time can be estimated from optical light curves
- Fermi LAT all-sky survey very well suited to search for such a signal
- Many new SNe will be detected with optical surveys in the near future

BACK UP

PHOTON-ALP PARAMETER SPACE

PHOTON-AXION/ALP MIXING IN A COHERENT MAGNETIC FIELD

 $B = 1 \mu G$, L = 10 kpc

Dobrynzmanesteralal220115]

SN CONSTRAINTS WITH DIFFERENT MODEL ASSUMPTIONS

PROJECTION OF SN CONSTRAINTS

GAMMA-RAY ANALYSIS PROCEDURE

- Add SN to ROI model assuming ALP model
- Calculate gamma-ray light curve ± 30 days around SN discovery date with one time bin per orbit (~2 x 30 x 24 / 1.5 = 960 orbits)
- For each orbit: derive SED and log likelihood curve in each energy bin

LIKELIHOOD FORMULATION

Gamma-ray likelihood: multiplied over energy bins, depends on ALP parameters, progenitor mass M, Bfield, nuisance parameters for background sources and time t_{exp}

$$\mathscr{L}(m_a, g_{a\gamma}, t_{\exp,j}, \boldsymbol{\theta} \,|\, \mathbf{D}_{\gamma}) = \left(\prod_{\Delta E_i} \mathscr{L}_{\gamma,i}(m_a, g_{a\gamma}, t_{\exp,j}, M, \mathbf{B}, \boldsymbol{\theta}_{\gamma} \,|\, \mathbf{D}_{\gamma}) \right)$$

Consider GTIs such that $t_{exp,j} \in \Delta t$ with

$$\int_{\Delta t} \pi(\mathbf{D}_{\text{optical}} | \boldsymbol{\theta}_{\text{optical}}) dt = 0.95$$

Convolved marginalized posterior integrated over time

Gives trials factor equal to the number of orbits inside Δt

LOG LIKELIHOOD RATIO TESTS FOR SOURCE DETECTION AND SETTING LIMITS

In analogy to WIMP searches: step through mass m_a

$$TS_{j} = -2\ln\left(\frac{\mathscr{L}(m_{a}, g_{a\gamma} = 0, t_{\exp,j}, \widehat{\theta})}{\mathscr{L}(m_{a}, \widehat{g_{a\gamma}}, t_{\exp,j}, \widehat{\widehat{\theta}})}\right)$$

Select orbit (\tilde{t}_{exp}) with highest TS for best fit / setting limits:

$$\lambda(m_a, g_{a\gamma}) = -2\ln\left(\frac{\mathscr{L}(m_a, g_{a\gamma}, \tilde{t}_{exp}, \widehat{\theta})}{\mathscr{L}(m_a, \widehat{g_{a\gamma}}, \tilde{t}_{exp}, \widehat{\theta})}\right)$$

SN	$1 t_{\rm CC} ({\rm MJD})$	$N_{\rm bins}$	$\mathrm{TS}_{\mathrm{max}}$
SN2009bb	$54908.965^{+0.652}_{-0.595}$	17	3.79
SN2009iz	$55087.015^{+1.662}_{-3.035}$	45	-0.00
SN2009jf	$55099.035^{+0.481}_{-0.559}$	10	6.72
$\mathrm{SN2010bh}$	$55266.096^{+0.947}_{-2.428}$	26	-0.00
SN2010et	$55345.256^{+2.344}_{-1.401}$	56	9.44
SN2011bm	$55639.702^{+0.801}_{-0.971}$	15	10.20
SN2012P	$55929.848^{+1.591}_{-1.979}$	52	5.04
SN2012ap	$55959.616^{+1.709}_{-4.111}$	53	2.46
PTF12gzk	$56131.494^{+0.121}_{-0.122}$	3	0.53
iPTF13bvn	$56457.020^{+0.236}_{-0.250}$	$\overline{7}$	1.29
SN2013ge	$56594.040^{+2.072}_{-3.554}$	90	6.14
SN2014L	$56681.285^{+0.311}_{-0.334}$	8	3.38
SN2014AD	$56723.830^{+1.715}_{-1.632}$	50	3.99
SN2015ap	$57271.141^{+0.642}_{-0.930}$	17	4.25
PTF15dtg	$57322.529^{+2.196}_{-3.763}$	53	1.21
SN2016bau	$57458.858^{+0.497}_{-0.889}$	9	-0.00
SN2016blz	$57481.087^{+2.394}_{-3.687}$	91	6.14
SN2016coi	$57530.317^{+1.190}_{-1.174}$	32	3.81
SN2017ein	$57896.352^{+0.495}_{-0.624}$	11	0.84
SN2017fwm	$57965.049_{-0.299}^{+0.152}$	5	0.37

RESULTS FOR COVERAGE TEST

Coverage =

 (number of times true signal in confidence interval) /
 (number of simulations)

- bin-by-bin likelihood gives correct coverage for small TS values, upper limits can be trusted. For high TS values: likelihood curves become extremely steep, hard to interpolate correctly, leading to under-coverage
- Science tools analysis gives under-coverage for small TS values, i.e., fits do not recover weak signal.
 For high TS values, coverage as expected, injected signal recovered
- **Conclusion**: bin-by-bin method works fine, limits can be trusted, reconstructed signals close to injected ones even for high TS, but in that case we would conduct a science tools analysis anyway

THE STRONG CP PROBLEM

- Theory of strong force (QCD) predicts electric dipole moment of the neutron with strength $\theta \in [-\pi,\pi]$
- Calculation: $|d_n| \approx 2.4 \times 10^{-16} \theta e \text{ cm}$
- Measurement [<u>Abel et al. 2020</u>]: $|d_n| < 1.8 \times 10^{-26}$ e cm
- $\Rightarrow |\theta| < 0.8 \times 10^{-10}$

d ₩µ

d

AXION SOLVES THE STRONG CP PROBLEM

- $\theta \longrightarrow a / f_a$ with scalar field a and scale f_a
- Potential V(a) generated by QCD, axion acquires mass

$$m_a \approx 10^{-9} \,\mathrm{eV}\left(rac{10^{16} \mathrm{GeV}}{f_a}
ight)$$

[Peccei & Quinn 1977; Weinberg 1978; Wilczek 1978]

AXIONLIKE PARTICLES (ALPs)

- QCD axion: $m_a \sim 1 / f_a$
- Axionlike particles: m_a and f_a independent parameters
- Predicted in several **extensions** of the standard model (Majoron, Familon, String Theory ...)

[Chikashige et al. 78; Langacker et al. 86; Wilczek 82, Witten 84; Conlon 06; Arvanitaki et al. 09; Acharya et al. 10; Cicoli et al. 12, see also Jaeckel & Ringwald 10, Irastorza & Redondo 18 for reviews]

Do not solve the strong CP problem

EVOLUTION OF AXION/ALP FIELD IN AN EXPANDING UNIVERSE

$$\ddot{a} + 3H\dot{a} + m_a^2 a = 0$$

