# Theoretical interpretation of the observed neutrino emission from TDEs

**DESY Science Communication Lab** 

Walter Winter<sup>1</sup> and Cecilia Lunardini<sup>2</sup> <sup>1</sup>DESY, Zeuthen, Germany <sup>2</sup>Arizona State University, Tempe, AZ, USA

ICRC 2021, originally planned for Berlin, featured by Zeuthen, #online July 2021



#### **Contents**

- Introduction
- Neutrino energetics
- A jetted concordance scenario
- Results
- A population of neutrino TDEs? (notes on the diffuse flux)
- Challenges/limitations and alternative scenarios
- Outlook/expectations (AT2019fdr)
- Summary
- Backup (with details on the model)

Watch our video – it is less technical than the slides! Do you find all gadgets?



# **Observation of a neutrino from AT2019dsg - recap**



Stein et al, Nature Astronomy 5 (2021) 510; see also talk by Robert Stein

# How to disrupt a star 101

Force on a mass element in the star (by gravitation)
 ~ force exerted by the SMBH at distance

$$r_t = \left(\frac{2M}{m}\right)^{1/3} R \ \simeq 8.8 \times 10^{12} \, {\rm cm} \ \left(\frac{M}{10^6 \ M_\odot}\right)^{1/3} \frac{R}{R_\odot} \left(\frac{m}{M_\odot}\right)^{-1/3}$$

• Has to be beyond Schwarzschild radius

 $R_s = \frac{2MG}{c^2} \simeq 3 \times 10^{11} \,\mathrm{cm} \left(\frac{M}{10^6 \ M_\odot}\right)$ 

- From the comparison ( $r_t > R_s$ ) and TDE demographics, one obtains M <~ 2 10<sup>7</sup> M<sub> $\odot$ </sub> Kochanek, 2016; van Velzen 2017
- Schwarzschild time indicator for time variability of an engine?

$$\tau_s \sim 2\pi R_s/c \simeq 63\,\mathrm{s}\,\left(\frac{M}{10^6\;M_\odot}\right)$$

 $\rightarrow$  Fastest time variability ~ 100s



 Measure for the luminosity which can be reprocessed from accretion through the SMBH: Eddington luminosity

 $L_{\rm Edd} \simeq 1.3 \ 10^{44} \ {\rm erg/s} \left( M/(10^6 \ M_{\odot}) \right)$ 

(TDEs are often Super-Eddington at peak)

• Measure for the maximally available energy:  $E_{max} \sim 10^{54}$  erg (half a solar mass)

# **A TDE unified model**

... used to motivate a concordance model

- Matches several aspects of AT2019dsg very well (L<sub>bol</sub>, R<sub>BB</sub>, X-rays/obscuration?)
- Supported by MHD sims;  $M_{SMBH} = 5 \ 10^6 \ M_{\odot}$ used; we use **conservatively**  $M_{SMBH} = 10^6 \ M_{\odot}$
- A jet is optional in that model, depending on the SMBH spin
- Observations from model:
  - Average mass accretion rate  $\dot{M} \sim 10^2 L_{\rm Edd}$
  - ~ 20% of that into jet
  - ~ 3% into bolometric luminosity
  - $\sim 20\%$  into outflow
  - Outflow with v ~ 0.1 c (towards disk) to v ~ 0.5 c (towards jet)



Dai, McKinney, Roth, Ramirez-Ruiz, Coleman Miller, 2018

# **Neutrino energetics**

... an upper model-independent limit

Upper limit for average neutrino luminosity ٠  $(4\pi \text{ solid angle emission, for pp similar})$ :  $L_{\rm u} \sim 25 L_{\rm add} \times f_{\rm c}$ 1/8 << 01

|         | d ^ | <sup>•</sup> comp | Λ | Cacc | ^ | <sup>ι</sup> pγ | ^ | 1/0 | · · · · · |
|---------|-----|-------------------|---|------|---|-----------------|---|-----|-----------|
| Average | ż   | Fraction          |   |      | С | )<br>ptical     |   |     |           |

in outflow, thickness mass BB, jet, ... <= 1, but accretion flavor (0.03-0.2?)typically << 1 rate Accelerated fraction into non-thermal PeV (!) energy protons (<< 0.2?)

• Yields  $E_v \sim 200 \text{ days x } 0.1 \text{ L}_{edd} \sim 2 \ 10^{50} \text{ erg (M}_{SMBH}/10^6 \text{ M}_{\odot})$  $\rightarrow$  0.2 events for M<sub>SMBH</sub> ~ 10<sup>6</sup> M<sub> $\odot$ </sub>

#### Conclusion: •

<u>either</u>  $M_{SMBH} > 10^7 M_{\odot}$  and super-efficient energy conversion, or the outflow must be collimated with  $\theta << 1$ such that  $L_v \rightarrow L_v / \theta^2$ 

| Estima | ates for SMBH mass |
|--------|--------------------|
| /M     | Reference          |

Per

-edd

 $M_{SMBH}/M_{\odot}$ ~ 2 107 McConnel, Ma, 2012 3 10<sup>5</sup> ... 10<sup>7</sup> Wevers et al, 2019 (conservative) 1.2-1.4 10<sup>6</sup> Ryu, Krolik, Piran, 2020 Cannizzaro et al, 2021 2.2-8.6 106



Fiorillo, van Vliet, Morisi, Winter, arXiv:2103.16577; see also talk Fiorillo (on neutrino spectra)

For a relativistic jet: second option with  $\theta \sim 1/\Gamma$ •

#### A jetted concordance scenario

# See BACKUP slides for more details

#### ... based on TDE unified model



Winter, Lunardini, Nature Astronomy 5 (2021) 472; see also Liu, Xi, Wang, 2020 for an off-axis jet

#### **Results for neutrino luminosity lightcurve**

- Neutrino production peaks at ~ 150 days (competition between decreasing production radius and proton luminosity)
- Jet ceases when jet luminosity drops below L<sub>edd</sub>; no neutrino production at much later times
- The neutrino emission is connected to X-rays; it may be not a coincidence that AT 2019dsg was one of the few TDEs observed in X-rays?
- Prediction: no neutrinos at t<sub>peak</sub> yet (here connected with travel time of outflow, which is only mildly relativistic)
- Somewhat uncertain what happens with the Xrays for t-t<sub>peak</sub> < 17 days (no data)</li>



Winter, Lunardini, Nature Astronomy 5 (2021) 472 (slightly modified figure)

#### **Results for neutrino spectrum**

- Expected neutrino energy between about 100 TeV and 10 PeV
- High target temperature; therefore multi-pion processes enhance and flatten pion production (cf, gray curve) Hümmer et al, 2010; see also Fiorillo, van Vliet, Morisi, Winter, arXiv:2103.16577, Fiorillo's talk
- Number of expected neutrino events:
  - 0.05 (gamma-ray follow-up GFU)
  - 0.26 (point source analysis PS)







Winter, Lunardini, Nature Astronomy 5 (2021) 472 (slightly modified figure); see also Fiorllo's talk for shape of neutrino spectra

# A population of neutrino TDEs?

- Diffuse flux from a population of such TDE consistent with current bounds
- Expected contribution to the IceCube diffuse neutrino flux at few percent level (compare to Bartos et al, 2105.03792: 8%-62% at the 90% CL)
- The typical neutrino TDE is probably less luminous than SwJ1644+47 → (used in Lunardini, Winter, Phys. Rev. D 95 (2017) 12, 123001 as prototype)
- Could neutrino-emitting TDE also power the UHECR flux?
   Biehl, Boncioli, Lunardini, Winter, Sci. Rep. 8 (2018) 1; see also Zhang et al., 2017, Guepin et al, 2018
   Note especially recent indications for under-estimated white dwarf TDE rate by factor of 50! (was most critical factor?) Tanikawa, Giersz, Sedda, 2021





Murase et al, arXiv:2005.08937; see also Hayasaki, Yamazaki, 2019

Jetted models

- Choked jet: probably too low luminosity
- Jet breakout model: where are other non-thermal signatures? (see backup)

#### Core models

- Corona model: parameters guesstimated from AGNs (where large assumed B for efficient stochastic acceleration is potentially in conflict with radio data ... Inoue, Khangulyan, Doi, arXiv:2105.08948)
- RIAF phase: typically many years after peak

Hidden wind model:

Large uncertainties from geometry

Alternatives to jetted models have in common:

- Lower neutrino event rate
- No late-arrival prediction for neutrino
- Require large SMBH mass >  $10^7 M_{\odot}$ ( $\rightarrow$  energetics problem on page 6)
- Do not explain why X-rays seen

### **Outlook/expectations**

- There has been another neutrino association with a potential TDE (AT2019fdr)
- The neutrino also came late after the peak (in this case, about a year later)
- Nevertheless the parameters/environment must have been very different

Expectations/extrapolations from the jetted concordance scenario (qualitatively):

- There should be X-ray target photons (although the parameters, such as T<sub>X</sub>, could be different, or the X-rays may be obscured by dust)
- The neutrino delay scales with the time it takes to travel to the scattering region (or the time the target builds up), i.e., the size of the system
- If the properties scale with  $M_{\rm SMBH}$  (to first order), the black hole mass of AT2019dsg must have been much smaller than that of AT2019fdr



From: Robert Stein & Simeon Reusch @ Cosmic Rays and Neutrinos in the Multi-Messenger Era, Paris, Dec. 7-11, 2020; Reusch et al, in preparation

#### **Summary and conclusions**

• From **energetics** for AT2019:

Option 1) very large SMBH mass and super-efficient energy conversion into neutrinos Option 2) a collimated (anisotropic) emission

- We followed the jet hypothesis in this talk, where the presence of a jet has, however, not unambiguously been established. On the other hand, a jet is a known efficient particle acceleration site expected to appear for a high enough black hole spin
- AT 2019dsg is one of very few TDEs observed in X-rays
  - $\rightarrow$  viewed in/close to "funnel"?
  - $\rightarrow$  also points towards anisotropic neutrino emission model
  - $\rightarrow$  relevant for neutrino production, as right energy range for p $\gamma$  interactions
- Delayed neutrino emission wrt peak luminosity may be related with timescale the X-rays build up as target; here timescale from a mildy relativistic outflow exceeding the production region
- Neutrino TDEs may substantially contribute to the diffuse neutrino flux; could potentially also power UHECR if C-O (or O-Ne) white dwarf disruptions are abundant enough
- We expect that the model can be applied to AT2019fdr as well; there are however substantial differences in that event
- Alternative neutrino production sites could be an AGN-like corona, the disk, or the outflow/debris stream; these alternatives typically fall into energetics option 2) above

# BACKUP

| ICRC 2021 | Walter Winter & Cecilia Lunardini

#### **TDE observations: Black Body radiation**

- BB radius drops over a timescale of ~ 150 days, then remains roughly constant van Velzen et al (ZTF), 2020
- Assume: neutrino production radius scales with BB radius (boosts late-term emission!)





Winter, Lunardini, Nature Astronomy 5 (2021) 472

#### Proton acceleration in internal shocks of a jet?

#### Motivation for a jet:

- Some evidence for a relativistic jet from optical polarimetry Lee et al, 2020
- A jet is consistent with expectations from the concordance model; located in "funnel"
- A jet provides a "natural" environment for proton acceleration, e.g. in internal shocks
- X-rays provide a target for neutrino production

#### **Assumptions:**

- Energetics from concordance scenario, starts at 20 L<sub>edd</sub>
- Jet ceases when jet luminosity drops below L<sub>edd</sub>
- $\Gamma$ =7, D=14 (on-axis view, perhaps less aligned ...)  $\rightarrow R_c \sim 2 \Gamma^2 t_v \sim R_{BB}$
- Efficiency: ε=20% of jet kinetic energy radiated into nonthermal protons (with expectation for GRB models)



Winter, Lunardini, Nature Astronomy 5 (2021) 472

# X-rays as externals targets (T ~ 0.06 keV)

- Expansion of outflow obscures X-rays on timescale of 10 days (from observation). Alternative: accretion disk cooling Cannizaro et al, 2020
- Same effect causes back-scattering of isotropized
  X-rays as external radiation into jet (10% assumed)
- Roughly consistent with attenuation length obtained from Dai et al, 2018 → effect expected even if accretion disk cooling causes decay
- Unattenuated X-rays from slim disk model Wen et al, 2020



disk



Winter, Lunardini, Nature Astronomy 5 (2021) 472

van Velzen et al (ZTF), 2020

Dai et al, 2018

# **Comments on possible signatures of a jet**

#### • Efficient energy dissipation?

Dissipation efficiency problem (kinetic power into non-thermal radiation) known in GRBs. Efficient energy dissipation would solve several issues (less jet power required, reduced afterglow)

#### Afterglow actually observed?

Can the radio observations be also described by the afterglow of a relativistic jet beyond "vanilla" assumptions, e.g., entering a steep density profile? Cannizzaro et al. 2020; see also Generozov et al, 2016; Cendes et al, 2021; Alexander, van Velzen, Horesh, Zauderer, 2020

#### • X-ray emission from jet observed?



Fig. from: Cannizzaro et al, arXiv:2012.10195

• Recollimated jet or special jet geometry? Precession?



#### **Notes on TDE demographics**

 $M_{bulge} \sim 50\% \text{ x } 10^{10.5} \text{ M}_{\odot}$  (host galaxy mass) ~ 10^{10} M\_{\odot}

• TDE rate

- M<sub>bulge</sub>-M<sub>BH</sub> correlations
  TDE-specific M<sub>bulge</sub>-M<sub>BH</sub>



Van Velzen, 1707.03458

**McConnel, Ma, 1211.2816** 

Wevers et al, 1902.04077