Theoretical interpretation of the observed neutrino emission from TDEs

nature astronomy

New sources of neutrinos

Walter Winter¹ and Cecilia Lunardini² ¹DESY, Zeuthen, Germany ²Arizona State University, Tempe, AZ, USA

ICRC 2021, originally planned for Berlin, featured by Zeuthen, #online July 2021

n Lab

Where are the neutrinos produced?

Considerations:

- Neutrino energy → need efficient CR acceleration site, right target photon energies (X-rays)
- Energetics (energy transfer into neutrinos)
- Delay of neutrino signal (150 days after peak)

One possible solution:

- A *jetted* concordance scenario with a jet hitting external radiation back-scattered in outflow
- Neutrino delay given by size of system/time the outflow needs
- Connection with X-ray observation
- Satisfies energetics for small BH mass, M_{SMBH} = 10⁶ M_{\odot}
- Caveat: clear jet signatures
 (still) missing

Winter, Lunardini, Nature Astronomy 5 (2021) 472; see also Liu, Xi, Wang, 2020; Murase et al, 2020; Hayasaki, Yamazaki, 2019

Want technical details?

 \rightarrow slides, proceedings (esp. energetics)

Want non-technical intro?

 \rightarrow see video; stay alert for special effects!

