Update of the supernova neutrinos monitoring with the LVD experiment ## C. Vigorito, a,* G. Bruno, b,c W. Fulgione b,d and A. Molinario b,d on behalf of the LVD Collaboration (a complete list of authors can be found at the end of the proceedings) ^aUniversity of Torino and INFN-Torino, Torino, Italy ^bINFN Laboratori Nazionali del Gran Sasso, L'Aquila, Italy ^cNew York University Abu Dhabi, NYUAD, Abu Dhabi, United Arab Emirates ^dINAF, Osservatorio Astrofisico di Torino, Torino, Italy E-mail: carlo.vigorito@to.infn.it The Large Volume Detector (LVD) at the INFN Gran Sasso National Laboratory, Italy, is a neutrino observatory designed to study low energy neutrinos from gravitational stellar collapses. The detector, 1 kton of liquid scintillator, is sensitive to core-collapse supernovae via neutrino burst detection with 100% efficiency over the Galaxy. In this contribution we summarize the results of the last run, lasting from 2014, January 1^{st} to 2021, May 5^{th} for a total live time of 2672 days. In the lack of a positive observation in this data set and including all previously published results since 1992 for a total live-time of 10007 days, the upper limit on the rate of core collapse and failed supernova explosions out to distances of 25 kpc is 0.08 year⁻¹ at 90% c.l..