

37th International Cosmic Ray Conference

Combined fit of the energy spectrum and mass composition across the ankle with the data measured at the Pierre Auger Observatory

Eleonora Guido^(1,2) on behalf of the Pierre Auger⁽³⁾ Collaboration

- (1) INFN Sezione Torino, Torino, Italy
- (2) Università degli Studi di Torino, Torino, Italy
- (3) Observatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malargüe, Argentina

12-23 July 2021 Berlin, Germany

Introduction to the combined fit

CRs ejected by generic EG accelerators

intergalactic medium

Assumptions on a simple astrophysical model (CRs considered at the escape)

- environments of EG sources
- Impact on the results of the systematic uncertainties
- Effect of the **assumptions on the source evolution** on the fit results ${\color{black}\bullet}$

• Description of the Auger measurements in the ankle region with the superposition of different Galactic/extragalactic contributions Inference about the physical parameters related to the energy spectrum and the mass composition of particles escaping the

The astrophysical model

Generic population of extragalactic sources

- * population of identical sources
- * uniform distribution except for a local overdensity for d < 30 Mpc
- * ejection of n representative nuclear species A, chosen among ¹H, ⁴He, ¹⁴N, ²⁸Si, ⁵⁶Fe

Energy spectrum escaping from the source environment

$$J(E) = \sum_{A} f_A \cdot J_0 \cdot \left(\frac{E}{E_0}\right)^{-\gamma} \cdot \begin{cases} 1, & E < Z_A \cdot R_{\text{cut}}; \\ \exp\left(1 - \frac{E}{Z_A \cdot R_{\text{cut}}}\right), E > Z_A \cdot R_{\text{cut}}. \end{cases}$$

Characterising the escape spectrum \rightarrow parameters estimated in the fit

* Spectral parameters Y, R_{cut}

* Energy spectrum normalisation J_0

$$J_0 \longrightarrow \mathscr{L}_0 = \frac{4\pi}{d_{\max}} \sum_{A} \int_{E_{\min}}^{\infty} E J_A(E) dE$$

expressed in $erg \cdot Mpc^{-3} \cdot yr^{-3}$

Emissivity of a population: total energy ejected per unit of comoving volume and time

Eleonora Guido

* Mass fractions f_A at the energy E_0

$$f_A \longrightarrow I_A = \frac{\int_{E_{\min}}^{\infty} J_A(E) E dE}{\sum_A \int_{E_{\min}}^{\infty} J_A(E) E dE}$$

Fractions of the integral of the energy density above $E_{min} = 10^{17} \text{ eV}$

The astrophysical model

Generic population of extragalactic sources

- * population of identical sources
- * uniform distribution except for a local overdensity for d < 30 Mpc
- * ejection of n representative nuclear species A, chosen among ¹H, ⁴He, ¹⁴N, ²⁸Si, ⁵⁶Fe

Energy spectrum escaping from the source environment

$$J(E) = \sum_{A} f_{A} \cdot J_{0} \cdot \left(\frac{E}{E_{0}}\right)^{-\gamma} \cdot \left\{ \right.$$

Propagation through the IGM and the Earth's atmosphere

- SimProp simulations for the propagation in the IGM \rightarrow model for the photo-disintegration cross sections σ_{pd}
 - Different possible **hadronic interaction models** for the <u>propagation in the atmosphere</u>

$\sigma_{ m pd}$	Talys, PSB
EBL	Gilmore, Dominguez
HIM	E POS-LHC, S ibyll2.3d, Q GSJetIIv4

 $\begin{cases} 1, & E < Z_A \cdot R_{\text{cut}}; \\ \exp\left(1 - \frac{E}{Z_A \cdot R_{\text{cut}}}\right), E > Z_A \cdot R_{\text{cut}}. \end{cases}$

→ model for the EBL spectrum and evolution

PSB (Puget, Stecker and Bredekamp (1976))Gilmore et al. (2012)TALYS (Koning, Hilaire and Duijvestijn (2005))Dominguez et al. (2011)

post-LHC hadronic interaction models

Data set and fit procedure

Data in $log_{10}(E/eV)$ bins of 0.1 width fitted above E ~ 6 10¹⁷ eV

- We aim at interpreting the ankle region
- At lower energy the Galactic CRs would be become dominant

 \rightarrow in the future the threshold could be lowered to ~10¹⁷ eV thanks to data from HEAT (High Elevation Auger Telescopes)

Data sets:

- Energy spectrum: last bin at 10^{20.2} eV
- * X_{max} distributions: up to 10^{19.7} eV (+ 1 additional bin for events above), binned in intervals of X_{max} of 20 g cm⁻² [A.Yushkov for the Pierre Auger Collaboration PoS(ICRC2019)482]

Eleonora Guido

We use only the **data from the standard fluorescence telescopes** for the X_{max} distributions (log₁₀(E/eV) > 17.8)

[Pierre Auger Collaboration to be submitted to Eur. Phys. J. C.]

First two moments of the X_{max} distributions for figurative purposes

Data set and fit procedure

Data in $log_{10}(E/eV)$ bins of 0.1 width fitted above E ~ 6 10¹⁷ eV

- We aim at interpreting the ankle region
- At lower energy the Galactic CRs would be become dominant

The fit procedure:

The observed and simulated fluxes are compared by minimising the deviance D

$$D = D(J) + D(X_{\max}) = -2 \ln\left(\frac{\mathscr{L}}{\mathscr{L}^{\text{sat}}}\right) = -2 \ln\left(\frac{\mathscr{L}_{\text{J}}}{\mathscr{L}^{\text{sat}}}\right) - 2 \ln\left(\frac{\mathscr{L}_{X_{\max}}}{\mathscr{L}^{\text{sat}}_{X_{\max}}}\right)$$

Energy spectrum → Gaussian distributions

$$L_{\rm J} = \prod_{i} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(J_i^{\rm obs})}{\sqrt{2\pi\sigma_i^2}}\right)$$

 X_{max} distributions \rightarrow multinomial distributions

$$L_{X_{\max}} = \sum_{i} n_i^{\text{obs}}! \sum_{j} \frac{1}{k_{i,j}^{\text{obs}}}$$

 $i = \log_{10}(E) \operatorname{bin}, j = X_{\max} \operatorname{bin}$

Eleonora Guido

We use only the **data from the standard fluorescence telescopes** for the X_{max} distributions (log₁₀(E/eV) > 17.8)

observed unfolded flux (detector effects) expected simulated flux observed events model probability (Gumbel distribution + detector effects)

The combined fit across the ankle

Simplest extension to lower energies of the above-ankle combined fit published in JCAP04(2017)038 \rightarrow fit above 10^{17.8} eV

The astrophysical model: superposition of different contributions to describe the ankle feature and the energy region below it

- The *above-ankle region* is described by an EG component with a mixed (free) mass composition lacksquare
- The **region below the ankle** is described by two scenarios:

A.One additional EG component of protons + a heavier Galactic contribution at Earth

- An additional heavier component is needed to describe the composition below the ankle

Galactic contribution at Earth (no propagation): single power law, with arbitrary spectral index + exponential cutoff

$$J(E) = \sum_{i=1}^{2} A_i \underbrace{J_0}_{0} \cdot \left(\frac{E}{E_0}\right)^{\gamma_g} \cdot \exp\left(\frac{E}{E_0}\right)^{\gamma_g} \cdot \exp\left(\frac{E}{$$

- Cutoff R_{cut}
- Normalisation J_0
- Fraction of A_1 and A_2 at $E_0: f_{A1}, f_{A2}$ (if there are 2 species)

* Interactions in the source sites could produce an additional pure p component at lower energies with a softer energy spectrum

→ Galactic contributions with a simple generic shape and different possible mass compositions (1/2 nuclear species)

The combined fit across the ankle

Simplest extension to lower energies of the above-ankle combined fit published in JCAP04(2017)038 \rightarrow fit above 10^{17.8} eV

The astrophysical model: superposition of different contributions to describe the ankle feature and the energy region below it

- The *above-ankle region* is described by an EG component with mixed composition lacksquare
- The **region below the ankle** is described by two scenarios:

A.One additional EG component of protons + a heavier Galactic contribution at Earth

- * Interactions in the source sites could produce an additional pure p component at lower energies with a softer energy spectrum
- An additional heavier component is needed to describe the composition below the ankle
 - \rightarrow Galactic contributions with a simple generic shape and different possible mass compositions (1/2 nuclear species)

B.One additional mixed component ejected by EG sources

It could be ejected by another population of EG sources

 \rightarrow similar to the one above the ankle but characterised by <u>different physical parameters</u> (spectral parameters, emissivity, mass composition)

Scenario A

Scenario A

 \rightarrow possible explanation: additional Galactic component of CRs accelerated in <u>Wolf-Rayet stars winds</u> (N nuclei can be accelerated up to ~10¹⁸ eV)

[S. Thoudam et al., A&A Volume 595, A33, November 2016]

	Sc	enario A	Scena	rio B
	Gal. co	ontribution +	Two EG	mixed
	EG comp	onent of pure p	compo	onents
Galactic contribution (at Earth)	N	+Si		-
$J_0^{\text{gal}} [\text{eV}^{-1} \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}]$	$(1.07 \pm 0.)$	$(06) \cdot 10^{-13}$		-
$\log_{10}(R_{\rm cut}^{\rm gal}/{\rm V})$	17.48	± 0.02		-
$f_{\rm N}(\%)$	9	3.0		-
EG components (at the sources)	Low energy	High energy	Low energy	High energy
$\frac{100 \text{ components (at the sources)}}{\int_{\Omega} [\text{erg Mpc}^{-3} \text{ vr}^{-1}]}$	$7.28 \cdot 10^{45}$	$4.4 \cdot 10^{44}$	$1.7 \cdot 10^{46}$	$4.5 \cdot 10^{4}$
$\sim_0 [0.811 p^{\circ}]$	3.30 ± 0.05	-1.47 ± 0.12	3.49 ± 0.02	-1.98 ± 0
$\log_{10}(R_{\rm cut}/{\rm V})$	24 (lim.)	18.19 ± 0.02	24 (lim.)	18.16 ± 0.11
<i>I</i> _H (%)	100 (fixed)	0.0	49.87	0.0
I_{He} (%)	-	27.17	10.92	28.60
I_{N} (%)	-	69.86	36.25	69.05
$I_{\rm Si}$ (%)	-	0.0	0.0	0.0
I_{Fe} (%)	-	2.97	2.96	2.35
$\frac{1}{D_{I}(N_{I})}$	49.5	5 (24)	60.1	. (24)
$D_{X_{\max}}(N_{X_{\max}})$	593.8	8 (329)	554.8	8 (329)
D(N)	643.3	3 (353)	614.9	0 (353)

• Low-energy component:

- \bullet very soft energy spectrum \rightarrow larger emissivity;
- \bullet very high cutoff \rightarrow not sensitive to the exact R_{cut} value (propagation effects are dominant)

Scenario B

Very hard high-energy component dominated by N and He → to interpret the very pronounced spectrum features

• High-energy component:

- hard energy spectrum, as in the above-ankle fit;
- mixed mass composition (He and N are dominant)
- \bullet relatively low cutoff \rightarrow observed fluxes affected by it

	Sc	enario A	Scena	ario B
	Gal. co	ontribution +	Two EG	mixed
	EG comp	onent of pure p	compo	onents
Galactic contribution (at Earth)	N	-+Si		_
$J_0^{\text{gal}} [\text{eV}^{-1} \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}]$	(1.07 ± 0.01)	$.06) \cdot 10^{-13}$		-
$\log_{10}(R_{\rm cut}^{\rm gal}/{\rm V})$	17.48	0.02		-
$f_{\rm N}(\%)$	9	3.0	-	
EG components (at the sources)	Low energy	High energy	Low energy	High energ
$\mathcal{L}_0 \text{ [erg Mpc}^{-3} \text{ yr}^{-1} \text{]}$	$7.28 \cdot 10^{45}$	$4.4 \cdot 10^{44}$	$1.7 \cdot 10^{46}$	$4.5 \cdot 10^{4}$
γ	3.30 ± 0.05	-1.47 ± 0.12	3.49 ± 0.02	-1.98 ± 0.01
$\log_{10}(R_{\rm cut}/{\rm V})$	24 (lim.)	18.19 ± 0.02	24 (lim.)	18.16 ± 0.16
<i>I</i> _H (%)	100 (fixed)	0.0	49.87	0.0
<i>I</i> _{He} (%)	-	27.17	10.92	28.60
I_{N} (%)	-	69.86	36.25	69.05
I_{Si} (%)	-	0.0	0.0	0.0
<i>I</i> _{Fe} (%)	-	2.97	2.96	2.35
$D_J(N_J)$	49.5	5 (24)	60.2	1 (24)
$D_{X_{\max}}(N_{X_{\max}})$	593.8	8 (329)	554.8	8 (329)
$D\left(N ight)$	643.3	3 (353)	614.9	9 (353)

- + Low energy: mixed composition dominated by H and N ~
- + High energy: increasingly heavier mass composition, mass ~ groups not much superposed

	Sc	enario A	Scena	ario B
	Gal. co	ontribution +	Two EG	i mixed
	EG comp	onent of pure p	compo	onents
Galactic contribution (at Earth)	N	-Si		-
$J_0^{\text{gal}} [\text{eV}^{-1} \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}]$	(1.07 ± 0.01)	$.06) \cdot 10^{-13}$		-
$\log_{10}(R_{\rm cut}^{\rm gal}/{\rm V})$	17.48	3 ± 0.02		-
$f_{\rm N}(\%)$	93.0		-	
EG components (at the sources)	Low energy	High energy	Low energy	High energ
$\mathcal{L}_0 \text{ [erg Mpc}^{-3} \text{ yr}^{-1} \text{]}$	$7.28\cdot 10^{45}$	$4.4 \cdot 10^{44}$	$1.7 \cdot 10^{46}$	$4.5 \cdot 10^{4}$
γ	3.30 ± 0.05	-1.47 ± 0.12	3.49 ± 0.02	-1.98 ± 0.01
$\log_{10}(R_{\rm cut}/{\rm V})$	24 (lim.)	18.19 ± 0.02	24 (lim.)	$18.16 \pm 0.$
<i>I</i> _H (%)	100 (fixed)	0.0	49.87	0.0
<i>I</i> _{He} (%)	-	27.17	10.92	28.60
I_{N} (%)	-	69.86	36.25	69.05
<i>I</i> _{Si} (%)	-	0.0	0.0	0.0
<i>I</i> _{Fe} (%)	-	2.97	2.96	2.35
$D_J(N_J)$	49.5 (24)		60.	1 (24)
$D_{X_{\max}}(N_{X_{\max}})$	593.	8 (329)	554.8	8 (329)
D(N)	643.	3 (353)	614.9	9 (353)

Differences between the two scenarios within the systematic uncertainties

 \rightarrow further investigations of the Galactic contribution to possibly define a favoured scenario

Effect of the systematic uncertainties

Experimental systematic uncertainties:

- Energy scale: σ_{sys}(E)/E = 14 %
 X_{max} scale: σ_{sys}(X_{max}) = 6 ÷ 9 g cm⁻²
- Large band around the total flux due to the energy scale uncertainty \rightarrow impact mainly on the estimated J₀ (and emissivity of sources)
- The strongest impact on the predictions is the one from the X_{max} scale

Systematic uncertainties from models:

Hadronic interaction model: Sibyll2.3d/EPOS-LHC/intermediate models (with a nuisance parameter)

Propagation models: Talys/PSB; Gilmore/Dominguez

(fit repeated considering different model configurations)

- *EPOS-LHC or models compatible with it are* <u>always preferred</u>
 - → HIM choice: stronger impact on D and on the predictions at Earth

Eleonora Guido

Effect of the systematic uncertainties

Experimental systematic uncertainties:

- Energy scale: σ_{sys}(E)/E = 14 %
 X_{max} scale: σ_{sys}(X_{max}) = 6 ÷ 9 g cm⁻²
- Large band around the total flux due to the energy scale uncertainty \rightarrow impact mainly on the estimated J₀ (and emissivity of sources)
- The strongest impact on the predictions is the one from the X_{max} scale

Systematic uncertainties from models:

Hadronic interaction model: Sibyll2.3d/EPOS-LHC/intermediate models (with a nuisance parameter)

Propagation models: Talys/PSB; Gilmore/Dominguez

(fit repeated considering different model configurations)

- *EPOS-LHC or models compatible with it are* <u>always preferred</u>
 - → HIM choice: stronger impact on D and on the predictions at Earth

Eleonora Guido

<u>The dominant effect on the the predicted fluxes and on the</u> deviance is the one from the experimental uncertainties

Effect of the source evolution

- Three possible source evolution: m=-3 (TDE-like), m=3.5 (SF-like), m=5 (AGN-like) \bullet
- All the combinations are considered for the two EG populations

Some of them have deviances comparable the one without source evolution (D~615):

- m=0/m=3.5 source evolution for the HE component
- m=-3/m=0 source evolution for the LE component

An AGN-like source evolution ($m \sim 5$ at small z) for the HE population is disfavoured

The other scenarios exhibit differences encompassed within the systematic uncertainties effect

 \rightarrow no scenario is favoured over the others

Conclusions

The energy spectrum and mass composition data for E>10^{17.8} eV can be interpreted by the superposition of different components

• <u>Region above the ankle:</u>

- * Hardening wrt JCAP2017 ($\gamma < 0$) but it is comparable to the effects of the systematic uncertainties
 - deviance profile approximately flat for $R_{\rm cut} \leq 5 \cdot 10^{18}$ eV and $\gamma \leq 1$
- <u>Alternative scenarios providing similar results for the region below the ankle:</u>
 - * One additional protons EG component + an intermediate-mass Galactic contribution at the Earth
 - A heavy composition is disfavoured (D~1000 if it is Si-dominated), a N-dominated composition is preferred
 - * One additional mixed component ejected by another population of EG sources
 - * In both cases the additional EG component has:
 - Very soft energy spectrum \rightarrow larger emissivity
 - Very high rigidity cutoff (not constrained by the fit)

* Very hard energy spectrum at the sources → describe the very pronounced spectral features and the rather narrow X_{max} distributions

* Rigidity cutoff < $10^{18.5}$ eV \rightarrow the cutoff at the sources affect the observed fluxes, but propagation energy losses NOT negligible

Conclusions

- All the results are prone to the effect of the *systematic uncertainties* * **Experimental**: X_{max} scale, (acceptance, resolution) and energy scale
 - * From models: propagation and hadronic interaction models uncertainties
 - \rightarrow strongest impact from the X_{max} uncertainties on the predictions at Earth
 - → minor impact of the model uncertainties, dominated by the hadronic interaction model choice (EPOS-LHC always preferred)
- Source evolution effect: some scenarios can be excluded but no favoured one can be selected
 - \rightarrow a strong evolution (e.g. m~5) for the HE component is disfavoured by our data (too many predicted low-energy particles to be compensated by a hardening of the HE energy spectrum)

The low-energy enhancements of the Observatory will allow in the future to go to even lower energies \rightarrow explore the transition region

Thank you for your attention

Backup slides

Back-up slides content:

- Overdensity correction effect
- Experimental systematic uncertainties
 - * From the X_{max} scale
 - * From the energy scale
- Systematic uncertainties from models
- Fractions of the energy density integral
- Systematic uncertainties effect in JCAP2017
- Mean rigidity vs energy

Taking into account the overdensity of nearby sources

In the simplest case:

- No source evolution 0
- Sources uniformly distributed in the comoving volume up to z_{max}

The Milky Way belongs to a cluster of Galaxy $\rightarrow \rho_{\rm loc} > \rho_{\rm avg}$

 \rightarrow overdensity correction to the weight of each event produced at r < 28.5 Mpc (z < 0.007)

$$\frac{\rho_{\text{loc}}}{\rho_{\text{avg}}} = 1 + \left(\frac{r_0}{r(z)}\right)^{\lambda} \qquad \lambda =$$

Eleonora Guido

1.66, $r_0 = 5.4$ Mpc [J.J.Condon et al., (2019)]

> Good agreement with distributions of stellar mass and SFR densities (see Biteau 2021)

Effect of the overdensity correction on the combined fit results

Models configuration: Talys, Gilmore, EPOS-LHC

Without the overdensity correction

	LE	HE			
γ	3.52 ± 0.03	-2.21 ± 0.11			
$\log (R_{cut}/V)$	24.0 (fixed)	18.13 ± 0.01			
I _H (%)	50.09	0.0			
I _{He} (%)	8.74	24.31			
I _N (%)	38.17	63.01			
I _{Si} (%)	0.0	9.67			
I _{Fe} (%)	3.01	3.01			
D _{Xmax} (N)	562.0	(329)			
$D_{J}(N)$	51.6 (24)				
$D_{tot}(N)$	613.6 (353)				

1

With the overdensity correction

	LE	HE			
γ	3.49 ± 0.03	-1.98 ± 0.10			
$\log (R_{cut}/V)$	24.0 (fixed)	18.16 ± 0.01			
I _H (%)	49.84	0.0			
I _{He} (%)	10.73	28.09			
I _N (%)	36.54	69.61			
I_{Si} (%)	0.0	0.0			
I _{Fe} (%)	2.88	2.29			
D _{Xmax} (N)	554.8	(329)			
$D_{J}(N)$	60.1 (24)				
$D_{tot}(N)$	614.9 (353)				

Effect of the systematic uncertainties

Experimental systematic uncertainties:

• Energy scale:
$$\sigma_{sys}(E)/E = 14\%$$

•
$$X_{\text{max}}$$
 scale: $\sigma_{\text{sys}}(X_{\text{max}}) = 6 \div 9 \text{ g cm}^{-2}$

$\Delta X_{\rm max}$	$\Delta E/E$	D_J	$D_{X_{\max}}$	D _{tot}
	-14%	52.5	578.3	630.9
$-1\sigma_{\rm syst}$	0	71.7	595.2	666.9
	+14%	64.9	609.3	674.2
	-14%	53.5	581.3	634.8
0	0	60.1	554.8	614.9
	+14%	70.6	548.8	619.5
	-14%	79.1	714.2	793.3
+1 $\sigma_{\rm syst}$	0	80.8	555.4	736.2
	+14%	82.4	615.7	698.2

Eleonora Guido

• Large band around the total flux due to the energy scale uncertainty \rightarrow impact mainly on the estimated J₀ (and emissivity of sources)

• The strongest impact on the predicted fluxes and on the deviance is due to the X_{max} scale uncertainty

Effect of the experimental uncertainties: X_{max} scale

$\Delta X_{ m max}/\sigma_{ m syst}$	-	-1		0	+1		
Component	LE	HE	LE	HE	LE	HE	
γ	3.47 ± 0.02	-1.83 ± 0.15	3.49 ± 0.02	-1.98 ± 0.10	3.54 ± 0.04	-2.24 ± 0.14	
$\log_{10}(R_{\rm cut}/{\rm V})$	19.4 ± 0.2	18.15 ± 0.02	24 (lim.)	18.16 ± 0.01	24 (lim.)	18.15 ± 0.01	
<i>I</i> _H (%)	36.48	$O(10^{-8})$	49.87	$O(10^{-7})$	56.07	3.46	
I_{He} (%)	13.20	21.76	10.92	28.60	23.30	29.93	
<i>I</i> _N (%)	30.73	74.64	36.25	69.05	19.57	65.45	
<i>I</i> _{Si} (%)	11.86	$O(10^{-7})$	$O(10^{-6})$	$O(10^{-7})$	$O(10^{-7})$	$O(10^{-6})$	
I_{Fe} (%)	7.74	3.60	2.96	2.35	1.07	1.16	
$D_J(N_J)$	71.7 (24)		60.1	60.1 (24)		80.8 (24)	
$D_{X_{\max}} (N_{X_{\max}})$	595.2 (329)		554.8 (329)		555.4 (329)		
$D_{\text{tot}}(N)$	666.9	9 (353)	614.9	614.9 (353)		736.2 (353)	

Eleonora Guido

Effect of the experimental uncertainties: energy scale

	$\Delta E/\sigma_{\rm syst}$	-1		0		+	-1
	Component	LE	HE	LE	HE	LE	HE
	γ	3.51 ± 0.03	-1.91 ± 0.13	3.49 ± 0.02	-1.98 ± 0.10	3.48 ± 0.02	-1.87 ± 0.12
	$\log_{10}(R_{\rm cut}/{\rm V})$	24 (lim.)	18.13 ± 0.02	24 (lim.)	18.16 ± 0.01	24 (lim.)	18.19 ± 0.01
	<i>I</i> _H (%)	51.45	1.09	49.87	$O(10^{-7})$	48.15	$O(10^{-7})$
	<i>I</i> _{He} (%)	20.67	34.69	10.92	28.60	4.35	21.93
	<i>I</i> _N (%)	26.20	62.97	36.25	69.05	42.52	74.43
	<i>I</i> _{Si} (%)	$O(10^{-6})$	$O(10^{-6})$	$O(10^{-6})$	$O(10^{-7})$	$O(10^{-7})$	$O(10^{-9})$
	<i>I</i> _{Fe} (%)	1.68	1.24	2.96	2.35	4.98	3.64
	$D_J(N_J)$	53.5	(24)	60.1	(24)	70.6	6 (24)
	$D_{X_{\max}}(N_{X_{\max}})$	581.3	(329)	554.8	3 (329)	548.8	3 (329)
	$D_{\rm tot}(N)$	634.8	(353)	614.9	(353)	619.5	5 (353)
$\Delta E/\sigma_{\rm syst} = 0$:	$\mathscr{L}_0(E > 10^3)$	$^{17}{ m eV}) = 1.7\cdot$	10 ⁴⁶ erg Mpc ⁻¹	$^{3} \mathrm{yr}^{-1}$	$\mathcal{C}_0(E > 10^{17} \mathrm{eV})$	$) = 4.5 \cdot 10^{44}$	$erg Mpc^{-3} yr^{-1}$
$\Delta E/\sigma_{\rm syst} = -1$:	$\mathcal{L}_0(E > 10^1$	$(^7 \mathrm{eV}) = 1.2 \cdot 1$	$10^{46} \text{ erg Mpc}^{-3}$	3 yr^{-1}	$\ell_0(E > 10^{17} \mathrm{eV})$	$) = 3.5 \cdot 10^{44}$	$erg Mpc^{-3} yr^{-1}$
$\Delta E/\sigma_{\rm syst} = +1$:	$\mathcal{L}_0(E > 10^1$	$e^7 \mathrm{eV}) = 2.4 \cdot 1$	$10^{46} \text{ erg Mpc}^{-3}$	3 yr^{-1}	$\ell_0(E > 10^{17} \mathrm{eV})$	$) = 5.6 \cdot 10^{44}$	$erg Mpc^{-3} yr^{-1}$
10^{38} 10^{37} $10^{$					1.0		19.5 20.0
				4 (Combined tit o	of the energy	spectrum and mass c

Eleonora Guido

Models configuration: Talys, Gilmore, EPOS-LHC

composition across the ankle

Effect of the systematic uncertainties

Systematic uncertainties from models:

Hadronic interaction model: Sibyll2.3d / EPOS-LHC / intermediate models

- If δ_{HIM} is close to 1 \rightarrow EPOS-LHC is dominant
- If δ_{HIM} is close to $0 \rightarrow \text{Sibyll2.3d}$ is dominant

Propagation model effect:

fit repeated considering different model configurations

	Talys, Gilmore		PSB, Gilmore		Talys, Dominguez		PSB, Dominguez		
	LE	HE	LE	HE	LE	HE	LE	HE	
$\mathcal{L}_0 \ [10^{45} \mathrm{erg} \ \mathrm{Mpc}^{-3} \mathrm{yr}^{-1}]$	17.0	0.45	16.8	0.44	21.7	0.71	22.1	0.71	
γ	3.49 ± 0.02	-1.98 ± 0.10	3.49 ± 0.03	-1.95 ± 0.16	3.67 ± 0.06	-0.95 ± 0.12	3.70 ± 0.05	-0.94 ± 0.12	
$\log_{10}(R_{\rm cut}/{ m V})$	24 (lim.)	18.16 ± 0.01	24 (lim.)	18.16 ± 0.02	18.04 ± 0.06	18.23 ± 0.02	18.03 ± 0.02	18.22 ± 0.02	
$I_{ m H}~(\%)$	49.87	0.0	51.15	0.91	45.48	0.61	45.67	0.79	
$I_{ m He}~(\%)$	10.92	28.60	12.68	49.09	6.13	20.25	8.55	48.79	
$I_{\mathbf{N}}$ (%)	36.25	69.05	33.25	43.89	45.03	73.70	42.10	40.57	
$I_{ m Si}~(\%)$	0.0	7.32	0.0	4.23	0.0	2.75	0.0	7.99	
$I_{ m Fe}~(\%)$	2.96	2.35	2.93	1.87	3.36	2.69	3.67	1.86	
$\delta_{ m HIM}$	1.0 (lim.)		1.0 (lim.)		$0.96\substack{+0.04 \\ -0.16}$		$0.94^{+0.06}_{-0.14}$		
$D_J (N_J)$	60.1	1 (24)	53.0	0 (24)	44.7 (24)		43.0 (24)		
$D_{X_{\max}} (N_{X_{\max}})$	554.8	8(329)	562.8	562.8~(329)		586.3 (329)		591.6(329)	
D (N)	614.9	$\Theta(353)$	615.8	8 (353)	631.0	(353)	634.6	(353)	

- <u>EPOS-LHC or models compatible with it are</u> always preferred
 - → HIM choice: stronger impact on D and on the predictions at Earth
- *Propagation models*: some expected changes in the best fit parameters

Effect of the systematic uncertainties

	Talys, Gilmore		PSB, Gilmore		Talys, Dominguez		PSB, Dominguez	
	LE	HE	LE	HE	LE	HE	LE	HE
$\mathcal{L}_0 \ [10^{45} \mathrm{erg} \mathrm{Mpc}^{-3} \mathrm{yr}^{-1}]$	17.0	0.45	16.8	0.44	21.7	0.71	22.1	0.71
γ	3.49 ± 0.02	-1.98 ± 0.10	3.49 ± 0.03	-1.95 ± 0.16	3.67 ± 0.06	-0.95 ± 0.12	3.70 ± 0.05	-0.94 ± 0.12
$\log_{10}(R_{\rm cut}/{ m V})$	24 (lim.)	18.16 ± 0.01	24 (lim.)	18.16 ± 0.02	18.04 ± 0.06	18.23 ± 0.02	18.03 ± 0.02	18.22 ± 0.02
$I_{ m H}~(\%)$	49.87	0.0	51.15	0.91	45.48	0.61	45.67	0.79
$I_{ m He}~(\%)$	10.92	28.60	12.68	49.09	6.13	20.25	8.55	48.79
$I_{ m N}~(\%)$	36.25	69.05	33.25	43.89	45.03	73.70	42.10	40.57
$I_{ m Si}~(\%)$	0.0	7.32	0.0	4.23	0.0	2.75	0.0	7.99
$I_{ m Fe}~(\%)$	2.96	2.35	2.93	1.87	3.36	2.69	3.67	1.86
$\delta_{ m HIM}$	1.0 (lim.)		1.0 (lim.)		$0.96\substack{+0.04 \\ -0.16}$		$0.94^{+0.06}_{-0.14}$	
$D_J (N_J)$	60.1	(24)	53.0	0 (24)	44.7 (24)		43.0 (24)	
$D_{X_{\max}} (N_{X_{\max}})$	554.8	8(329)	562.8	8(329)	586.3(329)		591.6(329)	
D(N)	614.9	$\Theta(353)$	615.8(353)		631.0 (353)		634.6 (353)	

The energy density integral fractions

• Mass fractions defined at $E_0 <$ the fit threshold \rightarrow strong dependence on γ \rightarrow not really informative about the mass composition at the sources

at z = 0 : $\mathscr{L}_0 = \sum_{A} \int_{E_{\min}}^{\infty} E q_A(E) dE$ expressed in $\operatorname{erg} \cdot \operatorname{Mpc}^{-3} \cdot \operatorname{yr}^{-1}$

Fractions of the integral of the energy density above $E_{min} = 10^{17} \text{ eV}$

Emissivity of a population: total energy ejected per unit of comoving volume and time

$$q_A(E) \propto J_A(E) \cdot 4\pi / r(z_{\text{max}})$$

expressed in $\text{erg}^{-1} \cdot \text{Mpc}^{-3} \cdot \text{yr}^{-1}$

Systematic uncertainties in JCAP2017 (above-ankle fit)

ΔX_{\max}	$\Delta E/E$	γ	$\log_{10}(R_{\rm cut}/{\rm V})$	D	D(
	-14%	$+1.33{\pm}0.05$	$18.70{\pm}0.03$	167.0	19
$-1\sigma_{\rm syst}$	0	$+1.36{\pm}0.05$	$18.74_{-0.04}^{+0.03}$	166.7	14
	+14%	$+1.39^{+0.03}_{-0.05}$	$18.79\substack{+0.03\\-0.04}$	169.6	13
	-14%	$+0.92^{+0.09}_{-0.10}$	$18.65{\pm}0.02$	176.1	18
0	0	$+0.96^{+0.08}_{-0.13}$	$18.68^{+0.02}_{-0.04}$	174.3	13
	+14%	$+0.99^{+0.08}_{-0.12}$	$18.71\substack{+0.03 \\ -0.04}$	176.3	11
	-14%	$-1.50^{+0.08}_{*}$	$18.22{\pm}0.01$	208.1	15
$+1\sigma_{\rm syst}$	0	$-1.49^{+0.16}_{*}$	$18.25\substack{+0.02\\-0.01}$	202.6	Q
	+14%	$-1.02^{+0.37}_{-0.44}$	$18.35{\scriptstyle \pm 0.05}$	206.4	11

*This interval extends all the way down to -1.5, the lowest value of γ we considered.

From JCAP2017

Systematic uncertainties from models (above-ankle fit)

Eleonora Guido

• Effect of the systematic uncertainties from models in the above-

• For negative spectral indices the deviance is almost flat

• The statistical uncertainties are very small so that each configuration has a different minimum, generally not compatible

Plots from S. Petrera

Mean rigidity vs energy

Loop over the energy bins

 $f_A(A, \log(E))$ is the fraction of nuclei A at energy E (from the fit)

For each possible mass number A at the Earth (A from 1 to 56): $A \rightarrow Z(A)$ (atomic number for a stable nucleus with mass number A)

Mean atomic number $\langle Z \rangle$ at energy E : $\langle Z \rangle (\log(E)) = \Sigma_A f_A(A, \log(E)) \cdot Z(A)$

The mean rigidity is : $\langle R \rangle = \Sigma_A f_A(A, \log(E)) \cdot E/Z(A)$ $\langle \log R \rangle = \Sigma_A f_A(A, \log(E)) \cdot (\log(E) - \log(Z(A)))$

Mean rigidity vs energy

	Talys, Gilmore		PSB, Gilmore		Talys, Dominguez		PSB, Dominguez	
	LE	HE	LE	HE	LE	HE	LE	HE
$\mathcal{L}_0 \ [10^{45} {\rm erg} \ {\rm Mpc}^{-3} {\rm yr}^{-1}]$	17.0	0.45	16.8	0.44	21.7	0.71	22.1	0.71
γ	3.49 ± 0.02	-1.98 ± 0.10	3.49 ± 0.03	-1.95 ± 0.16	3.67 ± 0.06	-0.95 ± 0.12	3.70 ± 0.05	-0.94 ± 0.12
$\log_{10}(R_{\rm cut}/{ m V})$	24 (lim.)	18.16 ± 0.01	24 (lim.)	18.16 ± 0.02	18.04 ± 0.06	18.23 ± 0.02	18.03 ± 0.02	18.22 ± 0.02
$I_{ m H}~(\%)$	49.87	0.0	51.15	0.91	45.48	0.61	45.67	0.79
I_{He} (%)	10.92	28.60	12.68	49.09	6.13	20.25	8.55	48.79
$I_{ m N}~(\%)$	36.25	69.05	33.25	43.89	45.03	73.70	42.10	40.57
$I_{ m Si}$ (%)	0.0	7.32	0.0	4.23	0.0	2.75	0.0	7.99
$I_{\mathrm{Fe}}~(\%)$	2.96	2.35	2.93	1.87	3.36	2.69	3.67	1.86
$\delta_{ m HIM}$	1.0 (lim.)		1.0 (lim.)		$0.96\substack{+0.04 \\ -0.16}$		$0.94^{+0.06}_{-0.14}$	
$D_J (N_J)$	60.1 (24)		53.0 (24)		44.7 (24)		43.0 (24)	
$D_{X_{\max}}$ $(N_{X_{\max}})$	554.8 (329)		562.8 (329)		586.3(329)		591.6(329)	
D(N)	$614.9\;(353)$		615.8(353)		631.0 (353)		634.6(353)	

