Diffuse Neutrinos From $\gamma\text{-}\mathrm{ray}$ Blazars via UHECR Propagation

Saikat Das

Astronomy & Astrophysics Group Raman Research Institute, India

Luminosity dependent density evolution

Figure: The distribution of blazars in luminosity-redshift space according to the luminosity function deduced in Ajello et al. (2012, 2013). Image: S. Das, N. Gupta, S. Razzaque; Astrophys. J. (submitted)

- () $\phi_{\gamma} = 1.25 imes 10^{-12} \ {
 m erg} \ {
 m cm}^{-2} \ {
 m s}^{-1}$ line divides resolved and unresolved blazars
- I Highest luminosities are dominated by FSRQs 742 resolved & 427 unresolved
- O Low luminosities are dominated by BL Lacs 2072 resolved & 5931 unresolved
- The effective baryon loading of the blazars $L_p = \eta_{\rm eff} L_{100}$, where $\eta_{\rm eff} \approx \eta / \Gamma_e^2$

Neutrino and IGRB fluxes

Figure: The secondary neutrino and gamma-ray fluxes for $E_{p, \max} = 1$, 10, and 100 EeV. Image: S. Das, N. Gupta, S. Razzaque; Astrophys. J. (submitted)

- **()** Injected proton spectrum: $dN/dE \propto E^{-2.6}$. $E_{p,\max}=1$, 10, 100 EeV.
- **@** Escape dominates over $p\gamma$ inside jet at $E > 10^{15}$ eV. Flux \propto baryon loading
- **③** Neutrino flux is $\gtrsim 10\%$ of the IceCube prediction at 6 PeV
- **(**) Maximum baryon load for minimum $E_{p,\max}$ constrained by cosmic ray data

- We assume the γ -ray flux in the 100 MeV 100 GeV band observed by Fermi-LAT originates entirely in leptonic processes inside the source
- We assume cosmic rays efficiently escape the system beyond 10 PeV valid as long as t⁻¹_{esc} > t⁻¹_{pγ} – sub-PeV neutrinos are produced inside the sources.

- We assume the γ -ray flux in the 100 MeV 100 GeV band observed by Fermi-LAT originates entirely in leptonic processes inside the source
- **(a)** We assume cosmic rays efficiently escape the system beyond 10 PeV valid as long as $t_{esc}^{-1} > t_{p\gamma}^{-1}$ sub-PeV neutrinos are produced inside the sources.
- **②** In this scenario, more luminous sources contribute more to neutrino & IGRB backgrounds, since, $L_p \propto L_\gamma$ may not hold invariably for all sources.
- The baryon load is constrained by the UHECR flux, for a given $E_{\rho,\max}$ the latter being constrained by the IGRB background.