

Diffuse neutrinos from γ -ray blazars via UHECR propagation

¹Astronomy & Astrophysics Group, Raman Research Institute, Bengaluru 560080, India ²Centre for Astro-Particle Physics, University of Johannesburg, Auckland Park 2006, South Africa

Objectives

The sources of the cosmic neutrino signal measured by IceCube neutrino observatory in Antarctica is still unresolved.

- We study the plausibility of their origin from blazars, that dominate the high-energy γ -ray sky [1]
- Cosmic rays from blazars ($E \gtrsim 10^{16}$ PeV) interact with the EBL (IR/UV/optical) and CMB photons to produce diffuse neutrinos • The cumulative contribution from resolved + unresolved blazars is
- calculated by using a luminosity function (LF) [2, 3]
- The proton energy threshold for pion production on EBL is $E_{\rm th}^{p,\pi} \approx$ 10^{17} eV. The latter can yield PeV neutrinos

Methods

- Denoting primed quantities for comoving frame, $L_{100} = (\delta_e^6/\Gamma_e^2)L'_{100}$ for FSRQs, and $L_{100} = \delta_e^4 L'_{100}$ for BL Lacs. $L'_p = \eta L'_{100}$ **2** Protons with E > 10 PeV are injected as cosmic rays. The cosmic-ray
- luminosity outside the jet (AGN frame) $L_p = \Gamma_e^2 L'_p$
- In the observer frame, $L_p = \Gamma_e^2 L'_p = \Gamma_e^2 \eta L'_{100} = \eta_{\text{eff}} L_{100}$, where we assume $\delta_e \simeq \Gamma_e$, for jet opening angles $\theta_j \sim 1/\Gamma_e$ and $\eta_{\text{eff}} = \eta/\Gamma_e^2$
- $p\gamma$ interactions on CMB and EBL produces secondary e^{\pm} , γ -rays, and neutrinos. EM cascade results in γ -ray spectrum contributing to IGRB
- **5** Diffuse neutrino luminosity from a single source is $L_{\nu}^{\text{obs}} = f_{\nu}L_{p} =$ $f_{\nu}\eta_{\rm eff}L_{100}$, where $f\nu$ is the fraction of CR energy in neutrinos
- 6 The luminsoity function is a double power-law $\Phi(L_{100}, z = 0, \Gamma) =$ $\frac{dN}{dL_{100}dV_cd\Gamma} = \frac{A}{\ln(10)L_{100}} \times \left[\left(\frac{L_{100}}{L_*} \right)^{\gamma_1} + \left(\frac{L_{100}}{L_*} \right)^{\gamma_2} \right]^{-1} g(\Gamma, L_{100})$ • Multiplying by the photon index evolution we get the LDDE given as $\Phi(L_{100}, z, \Gamma) = \Phi(L_{100}, z = 0, \Gamma) \times e(z, L_{100})$

Saikat Das¹, Nayantara Gupta¹ and Soebur Razzaque²

Results

• Total 9172 blazars are obtained by integrating $\Phi(L_{100}, z, \Gamma)$ over the parameter range of luminosity, spectral index, and redshift (cf. Fig 1) 2 The dashed line separates the region into resolved and unresolved sources above and below, in accordance with ~ 2800 blazars in 4LAC

Figure 1:Blazar distribution in redshift luminosity space. The dashed line separates the region into resolved and unresolved sources in *Fermi*-LAT survey.

- The secondary fluxes obtained from the LDDE are shown in Fig. 2. The neutrino flux peaks at ~ 6 PeV.
- 2 The sources are binned in a two-dimensional (ℓ, z) grid, where $\ell =$ $\log_{10}(L_{100}/\text{erg s}^{-1})$. Number of blazars w in each grid is calculated **3** We see that cosmic ray interactions can explain a little more than 10%of the IceCube flux upper limit at ~ 6 PeV.
- UHECR flux measured by Auger puts an upper bound of $\eta_{\text{eff}} = 11.1$, 5.8, and 4.4, for $E_{p,\max} = 1$, 10, and 100 EeV respectively
- **5** An increase in the value of $E_{p,\max}$ to 10 EeV increases the cascade photon flux and saturates the IGRB background at TeV energies

Figure 2: The neutrino and IGRB flux, including the unresolved blazars, for the maximum values of η_{eff} corresponding to $E_{p,\text{max}} = 1$, 10, and 100 EeV

for a given value of L_{100} and $E_{p,\max}$

Conclusions

• CR interactions on EBL produce diffuse flux of PeV neutrinos. More luminous sources contribute more to neutrino and IGRB

² To maintain the constraints put by IGRB measurements, the baryonic loading η must be decreased for $E_{p,\max} \gtrsim 10^{19}$ eV.

³ Neutrino flux obtained from an individual source, $F_{\nu} \propto \eta_{\rm eff} \propto \eta/\delta_e^2$,

4 Including the unresolved sources increases the flux by a factor of two at a few PeV. A strict L_p/L_{100} correlation may not hold invariably

References

[1] S. Das, N. Gupta and S. Razzaque, Astrophys. J. **910** (2021), 100 [2] M. Ajello *et al. Astrophys. J.* **751** (2012), 108 [3] M. Ajello et al. Astrophys. J. **780** (2014), 73