

ID #382 SH | Solar & Heliospheric

Commissioning of CALLISTO spectrometers in Peru and observations of type III Solar Radio Bursts

J.A. Rengifo, V. Loaiza-Tacuri, W.R. Guevara Day

RAA 2021 Vol. 21 No. 6, 145(8pp) doi: 10.1088/1674-4527/21/6/145 © 2021 National Astronomical Observatories, CAS and IOP Publishing Ltd. http://www.raa-journal.org http://iopscience.iop.org/raa

Research in Astronomy and Astrophysics

CALLISTO facilities in Peru: spectrometer commissioning and observations of type III solar radio bursts

Javier Alonso Rengifo^{1,2}, Verónica Loaiza-Tacuri^{3,2}, José Bazo¹ and Walter Robert Guevara Day^{4,2}

e-CALLISTO

CALLISTO: Compound Astronomical Low frequency Low cost Instrument for Spectroscopy and Transportable Observatory

> 170 stations,Daily data from ~60 stations

Monitor solar radio activities: 45 - 870 MHz

- Strategic location near Equator: observing the Sun evenly throughout the year
- Unique in its time-zone (GMT-5) coverage.

Installation & Commissioning

• 2012 - 2014 by the Astrophysics Directorate of CONIDA (Comisión Nacional de Investigación y Desarrollo Aeroespacial)

CALLISTO NA-06 (2012) at main office of CONIDA (Lima center)

CALLISTO NA-18 (2014) at CONIDA scientific site (Pucusana)

Station setup

Log-Periodic Antenna

LPDA antenna with 23 elements: 70–1000 MHz

- heterodyne receiver
- upto 400 frequencies per spectrum
- 1ms integration time

Data coverage: 70 - 870 MHz

Radio Frequency Interference

Simple dipole + spectral analyzer

- San Isidro: large background: significant telecommunication activities
- Pucusana: lower background noise, natural terrain shielding (surrounding hills).

Type III Solar Radio Bursts (SRBs)

- Common transient bursts.
- Fast drift from higher to lower frequencies over time
- Duration: single (1-3 s) , group bursts (1-5min)
- Produced by non-thermal electrons accelerated in the solar corona during flares.

Radio Observations at Pucusana

- Data taking: 10/10/2014 08/03/2016
- Stored in e-CALLISTO network FHNW Windisch server.
- Most significant signals: 12 events.
 (12/2014 06/2015)
- Time independent low-level standing-wave pattern removed.

Burst signal analysis

Background: mean intensity in a 15-minute interval from one day before.

Signal: mean intensity for each frequency over the time interval of the burst(i.e., ≈ 2 s).

Frequency range: where signal is above background given a significance cut.

Frequency drift rate

Drift rate: displacement of frequency representing the burst peak flux in a time interval:

$$D = rac{df}{dt} = rac{f_f - f_i}{t_f - t_i}$$

Procedure:

- For each LC fit a Gaussian around the peak flux
- Taking the ordered pair of central time and frequency of fit.
- Fit a linear regression of these points.

Global frequency drift

- For solar events with a group of consecutive bursts: variation of central burst frequency during the time of the event
- 4 group burst calculated.

Radio Burst Properties

SRB	Date	cut	Frequency Range	Drift	Duration	Global Drift
	(UT)	(σ)	(MHz)	(MHz/s)	(s)	(MHz/s)
Ι	2014/12/21 - 12:44:39	2.5	411 - 433	-84.0 ± 28.2	1.39 ± 0.02	s
п	2014/12/21 - 13:05:08	1	178 - 196	-41.4±5.4	1.32 ± 0.03	s
Ш	2015/01/14 - 13:28:47	3.5	122 - 140	-15.5 ± 0.5	3.12 ± 0.16	0.55±0.35
IV	2015/01/14 - 13:32:10	3	118 - 140	-14.0 ± 3.3	3.77±0.27	*
v	2015/01/14 - 14:05:02	2.5	131 - 157	-35.2 ± 1.8	2.11 ± 0.08	0.20 ± 0.14
VI	2015/01/25 - 13:18:54	2	122 - 174	-39.2±2.4	1.50 ± 0.02	s
VII	2015/01/26 - 11:44:01	4	127 - 170	-23.8 ± 4.6	4.48±1.66	0.51±0.17
VIII	2015/01/26 - 11:50:37	3	127 - 170	-30.2 ± 2.8	2.91±0.03	*
IX	2015/01/26 - 15:37:27	1.5	123 - 140	-18.8 ± 3.9	2.05 ± 0.03	s
X	2015/02/01 - 12:59:26	2	127 - 149	-18.5 ± 1.4	1.88 ± 0.03	0.14±0.02
XI	2015/02/01 - 14:36:38	2.5	127 - 170	-25.3±5.8	2.99 ± 0.18	†
XII	2015/06/30 - 17:17:26	1	114 - 170	-23.1±1.5	1.49 ± 0.02	s

- All have negative drift rates.
- SRBs between 114 and 174 MHz: <D> = -25.8 ± 3.72 MHz s⁻¹.

Conclusions

- Two e-CALLISTO stations have been installed and commissioned in Lima, Peru.
- During data acquisition the detector was unique in its time-zone coverage.
- RFI was analyzed: San Isidro station was not suitable for identifying SRBs, Pucusana station has a lower background due to the natural terrain shielding.
- We have demonstrated that Pucusana e-CALLISTO station was able to observe type III SRB events in the metric and decimetric bands.
- 12 type III SRB radio bursts have been identified:
 - frequency range = 114 174MHz,
 - ➤ drift rate = -25.8 ± 3.7 MHz s-1,
 - \blacktriangleright duration = 2.6 ± 0.3 s
- Global frequency drift for group bursts = 0.4 ± 0.1 MHz s⁻¹