
# Motivation

- Cosmic rays are blocked by the moon
  - No cosmic-ray-induced muons from lunar direction
  - A deficit in muons is measured with high statistics

- Moon is used as a standard candle for several calibration purposes for the IceCube Neutrino Observatory:
  - Presented on this poster:
    - Verification of improved analysis methods
    - Benchmarking of new directional reconstruction algorithms
  - Further planned applications:
    - Regular testing of detector performance
    - Testing of new detector calibration (DOM positions)
    - Test on the impact of Earth's magnetic field



Testing the Pointing of IceCube Using the Moon Shadow in Cosmic-Ray-Induced Muons

IBE

# Analysis Method



• Maximum-Likelihood method: number of blocked events  $n_{\rm s}$  is fitted with regards to the total number of events N

## $\log \mathcal{L}(n_s, \Delta \phi, \Delta \theta | \vec{x}_{1..N}, \boldsymbol{\Sigma}'_{1..N}) = \sum_{i=1}^N \frac{n_s}{N} \tilde{S}(\Delta \phi, \Delta \theta | \vec{x}_i, \boldsymbol{\Sigma}'_i) + \left(1 - \frac{n_s}{N}\right) \tilde{B}(\vec{x}_i, \boldsymbol{\Sigma}'_i)$

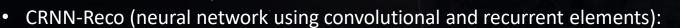
#### Uncertainty estimation $\Sigma_i'$

- Asymmetric Gaussian event reconstruction uncertainties
- Asymmetric scaling of the uncertainties
  based on the detector geometry to achieve
  correct statistical coverage

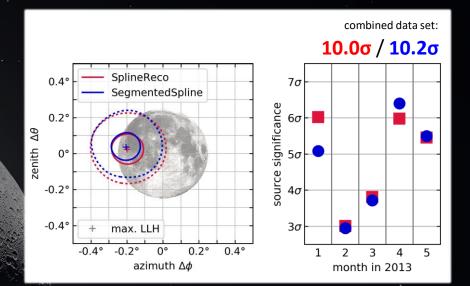
### Source description $ilde{S}$

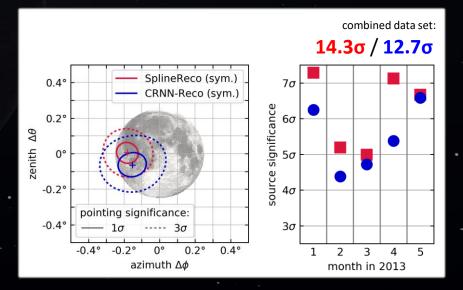
- Disc Source hypothesis
- At each test point integrate all event arrival probabilities over the disc

#### Background description $ilde{B}$


- Determine the true background distribution by summing up the Gaussian distributions of each event in the off-source region at each point
- Evaluate the background distribution for events in the on-source region by integrating over their uncertainty estimations

# est of Reconstruction Methods





Two new reconstruction methods were tested against the current standard SplineMPE (based on multiple photo electrons using spline tables):

- SegmentedSplineReco (based on SplineMPE with improved energy-loss estimation):
  - Performs as good as SplineMPE
  - Improvements are expected on higher energies than used here



- Performs worse than the current standard, but is not trained on cosmic-ray-induced muons bundles yet
   → better performance should be achievable
- Completely new type of single-step event reconstruction, passed this first valuable test on non-simulated data successfully





International Cosmic Ray Conference – July 2021

Testing the Pointing of IceCube Using the Moon Shadow in Cosmic-Ray-Induced Muons