

Search for gamma-ray lines in the Galaxy with DAMPE

Zunl-Lei Xu

Zhao-Qiang Shen, Kai-Kai DUA Xiang LI, M. N. Mazziottac (DAMPE collaboration)

Dark matter (DM) and linelike structure

Internal bremsstrahlung (Bringmann+2012)

Line searches in Fermi era

Andorson 12016

A better energy resolution means a better constraint

The line significance is proportional to the number of photons and inversely to the energy resolution

Dark Matter Particle Explorer (DAMPE)

- > PSD: charge measuresument via dE/dx and ACD for photons
- > STK: track, charge, and photon converter
- > BGO: energy measurement, particle (e-p) identification
- NUD: Particle identification

Sensitivity for LineLike Structures

The 95% confidence level upper limits of line flux for different energy resolution (left panel) and photon counts (right panel).

Develop special gamma-ray data set for line search

The relationship between the R value and the Z value at different energy

The functional relationship between the optimal Z value and energy at different ₇ energy

LineSearch data(stk track) (~88%): A subset of the fiducial photon data set (see Xu+2018 for detail), which optimize the quantity $\epsilon/(\Delta E/E)$ by adjusting the lower bound of the depth Z that events need to pass through.

The constraint with the new data sets is stronger than that using the standard data set with the largest improvement being 20%

- •LineSearch (LS) and BgoOnly (BGO) data set;
- •High energy trigger (HET);
- •Five years data;
- •Photon energy between 5 and 450 GeV.

SNR-optimal ROIs for various DM profiles

Line search in the MW

Evaluate systematic uncertainties

•Fractional signal is defined as $f = n_{sig}/b_{eff}$. In the background-only regions, $f = f_{sys} + f_{stat}$: - Statistical: $f_{stat} \sim Gauss(0, 1/\sqrt{b_{eff}})$; - Systematic: $f_{sys} \sim constant$.

•Background regions: 30°×10° boxes along the Galactic plane (|b|<5° and ||>30°).

•Fractional signal is dominated by statistical uncertainty.

Constraints on the DM parameters

The 95% confidence level constraints for different DM density profiles.

Summary

•We use 5-yr DAMPE photons to search for linelike structures between 10 and 300 GeV in the Milky Way:

- Two data sets are developed: the STK events optimized for line searches, and the BGO events;
- Optimal ROIs are derived according to the DM density profiles and the exposure of DAMPE;
- The summed unbinned likelihood with sliding windows technique is adopted;
- Systematic uncertainties are taken into account.

•We do not find any linelike signal in 5-yr DAMPE photon data, including the 133 GeV and 43 GeV line candidates reported in Fermi-LAT data.

•Our constraints for DM annihilation are comparable to the Fermi-LAT 5.8-yr results. Thanks to smaller systematic uncertainties, we have better constraints for DM decay lifetime below 100 GeV than Fermi-LAT.

Thanks for your time