Particle density fluctuations and correlations in low energy Cosmic-Ray showers simulated with CORSIKA

Weronika Stanek 1 Jerzy Pryga^2 for the CREDO Collaboration

¹Faculty of Physics and Applied Computer Science AGH UST, Krakow, Poland

²Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University, Krakow, Poland

37th ICRC, July 2021

Introduction

- Cosmic Ray Extremely Distributed Observatory (CREDO) a global collaboration which main aim is to search for Cosmic-Ray Ensembles (CRE) using all available data.
- CRE could be observed as some number of correlated air showers of relatively low energies spread over a large area.
- In this work we analysed low energy air showers (1 TeV 4 000 TeV) simulated with CORSIKA.
- The main objective is to investigate the particle density fluctuations, for muons and EM particles (electrons, positrons and photons).

AGH

Introduction Energy dependences Two particles correlation in location

Basic energy dependences

Figure: Average radius in which 95% of particles are included (denoted as R95).

First part includes calculation of radii in which a particular fraction of particles is included.

- It refers to particle density changes in different distances from the centre.
- Particles are not distributed evenly but are strongly grouped in the centre.

Two particles correlation in location

Figure: Ratio of density for EM particles.

Figure: Ratio of density for muons.

- Each cascade was divided into rings with a specific width. The neighborhood of a particle is similar to the square $(R - r) \times (R - r)$ (R - outer radius of a ring, r - inner.)
- Clustering effect is easily noticeable for muons and very strong for EM particles.

Thank you for your attention!

(日)