Cosmic-ray isotope measurements

 with HELIXPresented by Nahee Park

for HELIX Collaboration

HELIX Collaboration

University of Chicago

Lucas Beaufore, Hyebin Jeon, Rostom Mbarek, Dietrich Muller, Scott P. Wakely, Zack Siegel

Chiba University

- Makoto Tabata

Indiana University

Mark Gebhard, Brandon Kunkler, Michael Lang, James Musser, Kelli Michaels, Gerard Visser

McGill University

- David Hanna, Stephane O'Brien

Northern Kentucky University

Scott Nutter

Ohio State University

Patrick Allison, James J. Beatty, Keith McBride

Pennsylvania State University

Yu Chen, Stephane Coutu, Isaac Mognet, Monong Yu

Queen's University

- Nahee Park

University of Michigan

Noah Green, Gergory Tarle

Recent Updates from Direct Measurement

A new era of precision space-based measurements has brought some real surprises

Rising positron fractionPotentially rising anti-proton fractionHardening at $\sim 300 \mathrm{GV}$ in the spectra of primary nuclei (e.g. H, He, C, O) \& secondary nuclei (e.g. Li, Be, B)\rightarrow It is critical to understand the propagation!

10Be/9Be measurements

${ }^{10} \mathrm{Be}$: Unstable isotope with known half life of $1.4 \times 10^{6} \mathbf{~ y r}$

(10Be/9Be ratio provides strong constraints for the propagation models
"Best target for future experiment" (Weinrich et al, 2020)
Challenging measurements

- Several good measurements at a few hundred $\mathrm{MeV} / \mathrm{n}$. Above this, the ISOMAX balloon payload covers up to $\sim 2 \mathrm{GeV} / \mathrm{n}$

${ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be}$ measurements

${ }^{10} \mathrm{Be}$: Unstable isotope w/ known half life of $1.4 \times 10^{6} \mathbf{~ y r}$

${ }^{10} \mathrm{Be} / 9 \mathrm{Be}$ ratio provides strong constraints for the propagation models

- "Best target for future experiment" (Weinrich et al, 2020)

Challenging measurements

- Several good measurements at a few hundred $\mathrm{MeV} / \mathrm{n}$. Above this, the ISOMAX balloon payload covers up to $\sim 2 \mathrm{GeV} / \mathrm{n}$.

HELIX is designed to provide a precision measurement of ${ }^{10} \mathrm{Be}$!

High Energy Light Isotope eXperiment

A new magnet spectrometer payload to measure ${ }^{10 B e / 9 B e}$ isotope ratio up to $10 \mathrm{GeV} / \mathrm{n}$

$$
m=Z e R \frac{\sqrt{1-\beta^{2}}}{\beta}
$$

Very challenging measurements

- Require a mass resolution of few $\%$ up to $10 \mathrm{GeV} / \mathrm{n}$
- Readout within a very strong magnetic field
(Superconducting magnet used for HEAT balloon payloads, B field at the center $\sim 1 \mathrm{~T}$)
- All SiPM readout needs good thermal design

High Energy Light Isotope eXperiment

A new magnet spectrometer payload to measure ${ }^{10 B e / 9 B e}$ isotope ratio up to $10 \mathrm{GeV} / \mathrm{n}$

$$
m=Z e \boldsymbol{R} \frac{\sqrt{1-\boldsymbol{\beta}^{2}}}{\boldsymbol{\beta}}
$$

Very challenging measurements

- Require a mass resolution of few $\%$ up to $10 \mathrm{GeV} / \mathrm{n}$
- Readout within a very strong magnetic field
(Superconducting magnet used for HEAT balloon payloads, B field at the center $\sim 1 \mathrm{~T}$)
- All SiPM readout needs good thermal design

Two stage approach to cover wider range of energy

- Stage 1 : covers up to $\sim 3 \mathrm{GeV} / \mathrm{n}$

Time-Of-Flight

Three layers of 1 cm thickness fast plastic scintillator, 2.3 m top to bottom

Timing resolution of $<50 \mathrm{ps}$ for $\mathrm{Z}>3$

- Each top and bottom layer consists of 8 of 20 cm EJ20o scintillator paddles with each end read by 8 SiPMs
- Smaller middle layer to constrain the trigger geometry
- Fast signal output used to measure the timing information with TAC circuit. TDC timing resolution better than 25 ps
- Slow signal output used to measure the charge information with dynamic range of ~ 1000

Preliminary analysis on the muon test shows a timing resolution of 260 ps

Drift Chamber Tracker

Multi-wire drift chamber with drift gas $\mathrm{CO}_{\mathbf{2}}+\mathrm{Ar}$

Spatial resolution of $65 \mu \mathrm{~m}$ for $\mathrm{Z}>3$72 sense layers, read out with 80 MHz samplingInstalled in the bore of magnet within a thin pressure vessel (1 atm)
Prototype measurements show a tracking resolution for muons to be consistent with reaching the design goal

Ring Imaging Cherenkov Counter

Proximity-focused RICH with SiPM readout

Velocity resolution of $\Delta \beta / \beta \sim 1 \times 10^{-3}$ for $\mathrm{Z}>3$ for $\mathrm{E}>1 \mathrm{GeV} / \mathrm{n}$

- Radiator : Highly transparent \& hydrophobic high refractive index aerogel ($\mathrm{n} \sim 1.15$)
- Refractive index calibration w/ systematic error at 10^{-4} level (\rightarrow ICRC poster \#1372: S. O’Brien)
- Focal plane
- $1 \mathrm{~m} \times 1 \mathrm{~m}$ focal plane covered by Hamamatsu SiPM array (half-filled in checkerboard pattern, $\sim 13 \mathrm{k}$ channels)
- Single p.e. detectability
- Thermal plate underneath to reduce thermal noise in SiPMs

Integration underway...

I Flight hardware mass production
■ Magnet refurbishment and passed vacuum test
V Individual component thermal-vacuum test
[Individual component magnet field test
■ DAQ \& flight software initial integration test
D Detector final integration tests : on-going
D Payload environment test
[Hang test
D Ready for flight

Summary

HELIX is moving forward to be ready for the full integration test in 2021, and a flight in 2022 from Kiruna, Sweden!

Recent discoveries of new features of CRs require better understanding of CR propagation.

Measurement of propagation clock isotope, such as ${ }^{10} \mathrm{Be}$ can provide essential data.

HELIX is a magnet spectrometer designed to measure the light isotopes from proton up to neon ($\mathrm{Z}=10$). The instrument is optimized to measure ${ }^{10} \mathrm{Be}$ from $0.2 \mathrm{GeV} / \mathrm{n}$ to beyond $3 \mathrm{GeV} / \mathrm{n}$ with a mass resolution $\leqslant 3 \%$.

The production of flight hardware has finished, and its performance was tested. Integration tests are underway.

