

UC SANTA BARBARA Kavli Institute for Theoretical Physics

Chad Bustard¹ and S. Peng Oh²

Introduction

- Cosmic rays can gain energy from stochastic scatterings in a turbulent velocity field, i.e. turbulent reacceleration (a 2nd order Fermi mechanism). We consider two flavors of reacceleration:
 - Resonant individual CRs resonantly scatter off magnetic perturbations with sizes ~ the CR gyroradius

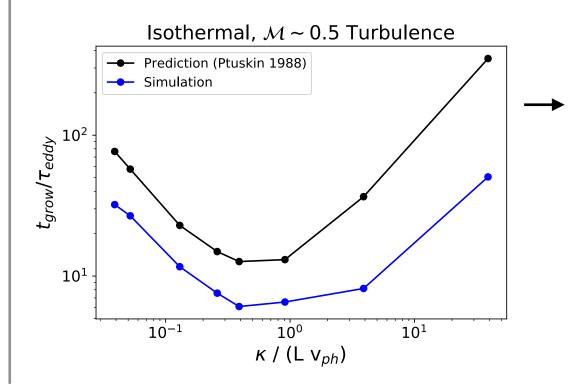
$$D_{xx}D_{pp} = p^2 V_A^2 \left\langle \frac{1-\mu^2}{\nu_+ + \nu_-} \right\rangle \left\langle \frac{(1-\mu^2)\nu_+\nu_-}{\nu_+ + \nu_-} \right\rangle$$

- Non-resonant the bulk CR fluid undergoes large-scale compressions and rarefactions [1]
- Reacceleration can be important!
 - It appears to explain radio halos in merging galaxy clusters [2]
 - Proposed to simultaneously explain the bump in B/C ratio observed at ~ 1 GV, while maintaining a single power-law diffusion dependence [3]
- However, for GeV CRs, which are dominantly self-confined via the resonant streaming instability, the physical underpinnings of reacceleration are unclear.
 - Resonant reacceleration is not permitted. Only waves co-moving with the CR drift are excited: $\nu_{-} = 0 \rightarrow D_{pp} = 0$ [4,5]
 - Non-resonant reacceleration of self-confined or "streaming" cosmic rays is unexplored — this is our focus

Analytic Theory

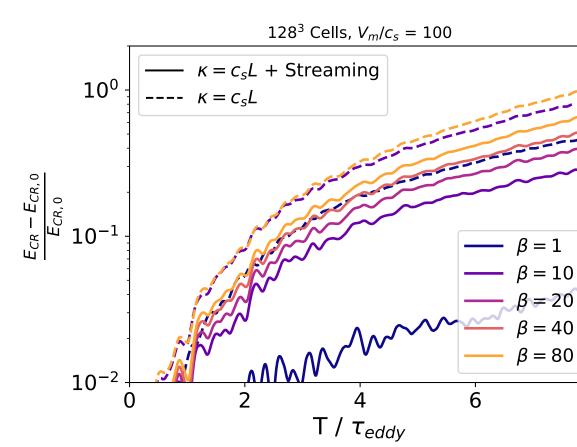
Our regime of interest: Self-confined CRs ($E \lesssim 300$ GeV [4]) in subsonic ($M_s = v/c_s < 1$), compressive turbulence

$$\frac{\partial E_{cr}}{\partial t} \sim -v \cdot \nabla P_{cr} + v_A \cdot \nabla P_{cr}$$


Energy loss (gain) from rarefaction (compression) Energy transferred from CRs to Alfven waves: $t_{loss} \sim L/v_A$

• Fastest reacceleration occurs when CRs gain energy from compression but diffuse to a different turbulent eddy before rarefaction (energy loss) $\kappa_{crit} = Lv_{ph}$ (L = outer eddy scale, $v_{ph} = c_s$ = characteristic speed of compressible waves in the medium) [1]

 $t_{grow,crit} \sim -\frac{1}{\sqrt{2}}$ lgrow,crit $v_{ph} (\rm cm/s)$ $\kappa_{crit} = v_{ph}L \ (\text{cm}^2)$ $t_{loss}/t_{grow,min}$


Non-resonant reacceleration is likely negligible in the warm ISM, but may still be efficient in the high- β ICM and possibly CGM

- field-aligned diffusion included

Turbulent Reacceleration of Streaming Cosmic Rays: Fluid Simulations

- 1. Kavli Institute for Theoretical Physics, Contact: <u>bustard@ucsb.edu</u>
- 2. University of California Santa Barbara, Physics Department

Pure diffusion with $\kappa = \kappa_{crit}$ results in fast growth over a few eddy turnover times. Adding in streaming, even with $\kappa = \kappa_{crit}$, gives slow growth unless β is large. t_{grow} monotonically decreases with

increasing β

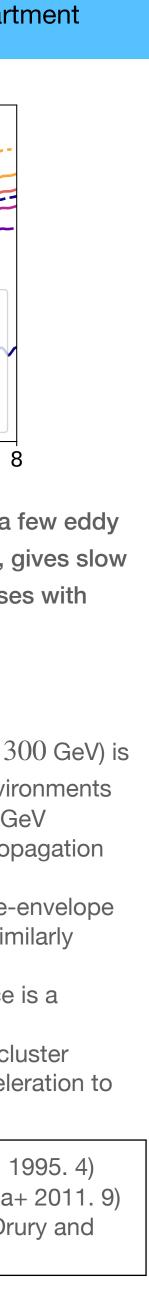
Conclusions

- Non-resonant reacceleration of self-confined CRs (E $\lesssim 300$ GeV) is heavily stunted by energy losses in ISM-like ($\beta \sim 1$) environments
- As resonant reacceleration is similarly impermissible at GeV energies, canonical growth rates implemented in CR propagation models do not apply at GeV energies
 - Synchrotron constraints [8, 9, 10] and back-of-the-envelope calculations of reaccelerated CR power [11, 12] similarly disfavor this parameterization of reacceleration
 - Shock reacceleration [13] in supersonic turbulence is a separate and intriguing possibility
- Non-resonant reacceleration still operates efficiently in cluster environments and is less sensitive than resonant reacceleration to CR microphysics, turbulence properties, etc.

References: 1) Ptuskin 1988. 2) Brunetti and Lazarian 2011. 3) Heinbach and Simon 1995. 4) Zweibel 2017. 5) Amato and Blasi 2018. 6) Stone+ 2020. 7) Jiang and Oh 2018. 8) Trotta+ 2011. 9) Di Bernardo+ 2013. 10) Orlando and Strong 2013. 11) Thornbury and Drury 2014. 12) Drury and Strong 2017. 13) Bresci+ 2019

$\frac{L}{2}$		Unless eta
$\frac{1}{\sqrt{\beta}M_s^2}$	→	loss pro energy subsonic

 $\gg 1$, energy revails over y gain from ic turbulence


	WIM	CGM	ICM
	10^{6}	10^{7}	10^{7}
	$100 \ \mathrm{pc}$	1-10 kpc	$100 \ \rm kpc$
$^{2}/\mathrm{s})$	3×10^{26}	3×10^{27} - 3×10^{28}	3×10^{29}
	1	10?	100
	\mathcal{M}_s^2	$\sqrt{10} \mathrm{M}_s^2$	$10 \mathcal{M}_s^2$

Simulations

• *Numerical tool:* Athena++ MHD code [6] with two-moment CR module [7]; solves the time-dependent CR energy and flux equations; streaming and

• Setup and methods: Cubical box with volume L^3 , fiducially resolved by 128^3 cells; purely compressive, $M_s \sim 0.5$ turbulence driven parabolically at the outer scale (L) by an Ornstein-Uhlenbeck process; gas equation of state is isothermal; Initially $P_{g}/P_{cr} \sim 100$, $P_{g}/P_{B} = \beta$ is varied

> Simulations with pure diffusion (no streaming) recover analytic growth rates within a factor of 2, at least with $\kappa \lessapprox \kappa_{crit}$

