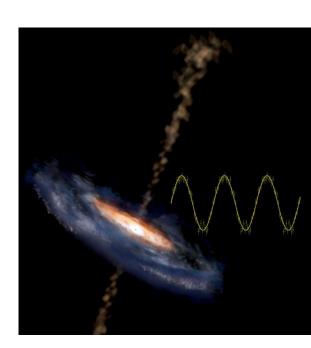


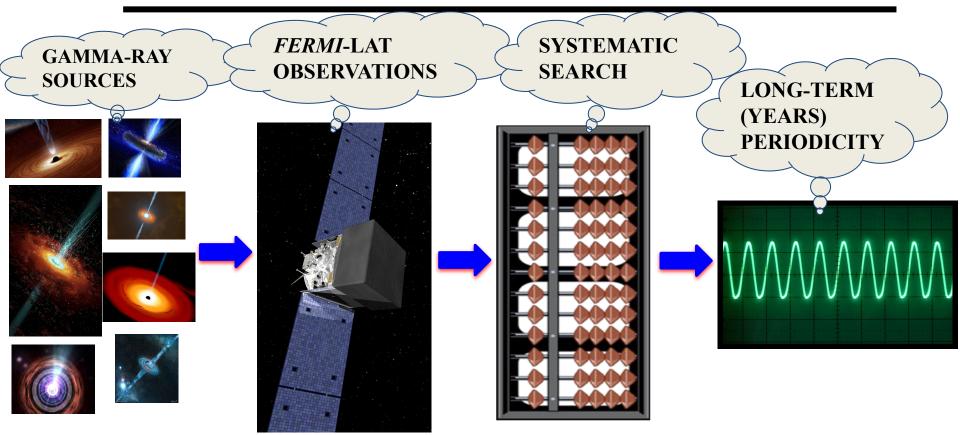
Building a Robust Sample of Fermi-LAT Blazars that Exhibit Periodic gamma-ray Emission

Pablo Peñil
Marco Ajello
Sara Buson
Alberto Domínguez
Stefan Larsson
on behalf of the Fermi-LAT collaboration


Clemson University (SC, USA)

37th ICRC 7-(12-23)-2021

Introduction

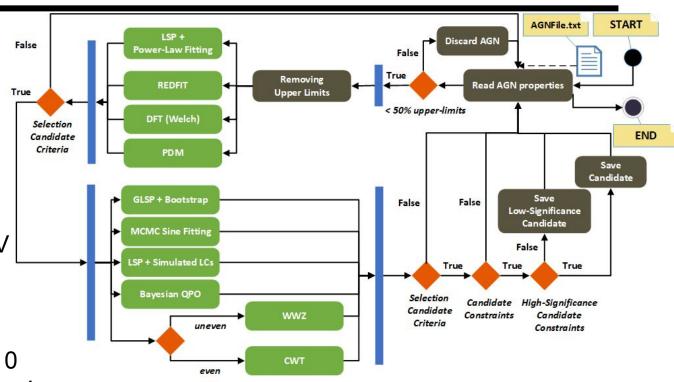


- About 10% of AGN → launch highly collimated, relativistic, jets (e.g., Sartori et al. 2019)
 - Pointed towards our line of sight → blazars
- Blazars: variability in the overall electromagnetic spectrum:
 - Different timescales:
 - Long-term variations → years or months
 - Short variations → days, hours or even minutes.
- Pattern → Periodicity
 - Provide information about its astrophysical nature

Methodology

Previous Results

3FGL+2FHL+3FHL blazars

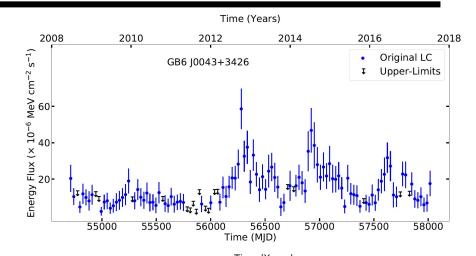

Telescope time: Aug. 2008-Sep. 2017

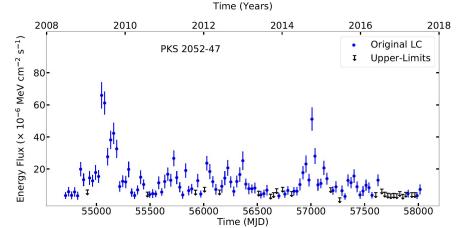
Data Reduction:
 Flux integrated ≥1 GeV
 28-days binning

Methods:

Periodicity detection: 10

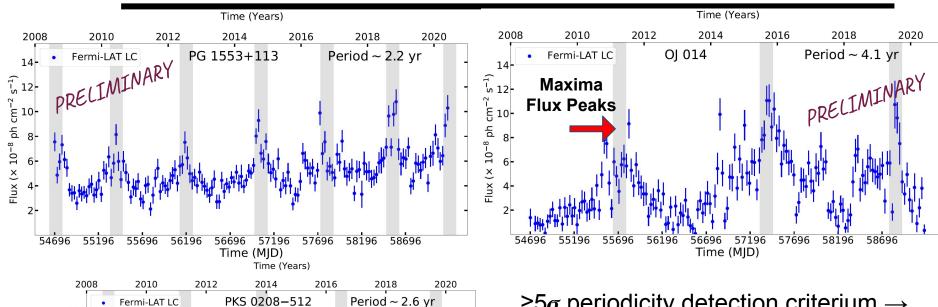
Significance estimation: 4




Peñil et al. 2020

Previous Results

- 11 High-significance candidates (4σ in 4 methods)
 - 9 New detections
- 13 Low-significance candidates (4σ in 3 methods)
 - 9 New detections
- 6 objects previously reported in the literature:
 - 5 with the same period
 - S5 0716+ 714


Gamma-Ray Data

- 24 periodicity candidates from previous work Peñil et al., 2020
- Light Curves
 - Telescope time: August 2008-December 2020
 - Extended with 3 extra years → total of 12 years
- Data reduction:
 - Flux integrated ≥100 MeV
 - 28-days binning

Results: 6 Blazars $\geq 5\sigma$ periodicity detection

F 80. PRELIMINARY

55696

57696

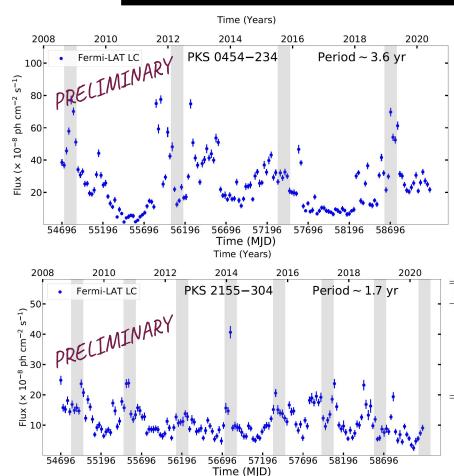
Time (MID)

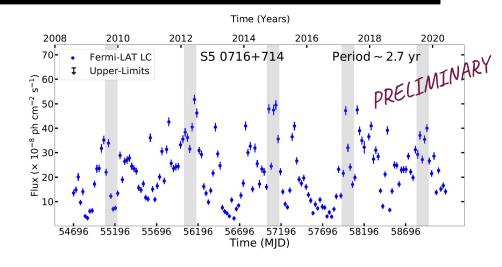
58196

58696

120-

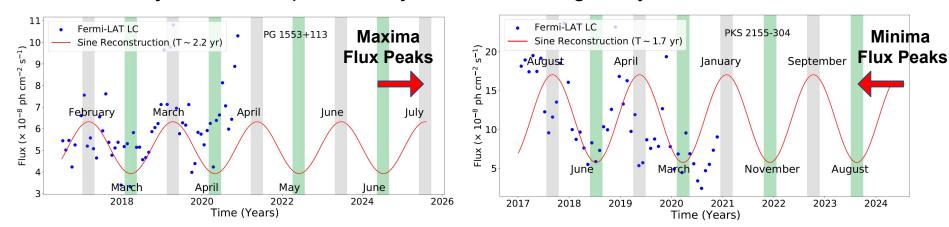
Flux (x 10⁻⁸ ph cm⁻² s⁻¹)


20-


 $\geq 5\sigma$ periodicity detection criterium \rightarrow 5σ in average

Peñil et al. 2020: $>4\sigma$, $>3.5\sigma$, $>3\sigma$ respectively

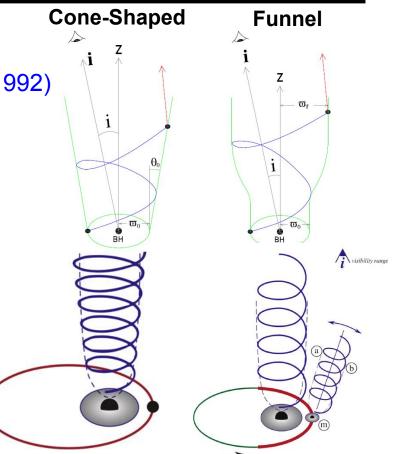
Results: 6 Blazars $\geq 5\sigma$ periodicity detection


4FGL Source Name	RAJ2000	$\mathrm{DecJ}2000$	Type	Redshift	Association Name	Period (yr)
J0210.7-5101	32.68952	-51.01695	fsrq	1.003	PKS 0208-512	2.6
J0457.0 - 2324	74.26096	-23.41384	fsrq	1.003	PKS $0454-234$	3.6
J0721.9 + 7120	110.48882	71.34127	bll	0.127	S5 0716+714	2.7
J0811.3 + 0146	122.86418	1.77344	bll	1.148	OJ 014	4.1
J1555.7+1111	238.93169	11.18768	bll	0.36	PG 1553+113	2.2
J2158.8 - 3013	329.71409	-30.22556	bll	0.116	PKS 2155-304	1.7

Peñil et al. 2020: $>2.5\sigma$, $>2.5\sigma$, $>3\sigma$ respectively

Predicting the Future

- Predict the future:
 - 4 objects have a peak/valley emission during this year


Strategy to optimize Cherenkov telescopes observations

Physical Interpretation

• Single SMBH:

- Lighthouse effects in jets
 (e.g. Camenzind and Krockenberger 1992)
- Density inhomogeneities in jets (Mohan and Mangalam, 2015)
- Binary SMBH
 - PG 1553+113:
 - Perturbed Jet(Cavaliere, A., et al., 2017)
 - Double jets (Tavani, M., et al., 2018)
- Increasing redshift → binary SMBHs (Volonteri, M., et al., 2009)

Conclusions

- We find 6 blazars with periodicity detected with $\geq 5\sigma$
 - High redshift → binary system

- Estimating the future behavior of the periodicity candidates:
 - 4 blazars to be evaluated over this year
- Any questions: <u>ppenil@clemson.edu</u>