

Introduction

Muon introduction

1. The main contributors to the muon component in air showers are charged pions (π^+, π^-) and kaons (K^+, K^-, K_L^0) , but also charmed particles, such as D^{\pm} , D^{0} , J/ ψ and others

$$p + N(or A) \rightarrow p + N(or A) + n\pi^{\pm,0} + \lambda^{\pm,0}$$
$$\pi^{\pm} \rightarrow \mu^{\pm} + (\overline{\nu_{\mu}})$$

2. Longitude development of muons preserves the information of primary particles and plays an important role in the study of composition identification with energy 10^{15} eV- 10^{16} eV.

Purpose to study Muon

- Measure the cosmic ray energy spectrum and mass composition around knee region
- Helps to study the hadronic interaction model
- Provide insight on whether new physics phenomena take place

 X_{max} : the air depth of the shower maximum development X_{max}^{μ} : the maximum of the longitudinal profile of the muon production rate X_{max}^{μ} can be used to identify mass compositions of cosmic rays.

Air shower simulation

Simulation with CORSIKA (v76400)

- EPOS-LHC,QGSJETII-04
- Zenith angle(θ): fixed 45°
- Altitude: $4410m (X = 600g/cm^2)$
- Energy: 10PeV; 5PeV; 1PeV

Number of shower	10PeV	5PeV	1PeV
Proton	1000	2000	2000
Iron	1000	2000	2000

In order to ensure the shower full development, the zenith angle is selected as 45°

The study of the longitude development of muons in air shower

Liping Wang^{1,2}, Lingling Ma², Cunfeng Feng¹

- mesons : $t_{\pi} \sim 3ns$

$$\overline{AB} = \sqrt{BC^2} + (\overline{AO} - \overline{BB'})^2$$

$$\overline{AB} = \overline{AC} + c \times t_g$$

$$\overline{AO} = \frac{1}{2} \left(\frac{\overline{BC}^2}{c \times (t_g)} - c \times (t_g) \right) - c \times t_{\pi}$$

Muon propagation

* t_a is the dominated when r>400m

1 Shandong University, Qingdao, China 2 Key Laboratory of Particle Astrop.hysics, Institute of High Energy Physics, CAS, Beijing, China

a:
$$\frac{dN}{dX} = (1 + \frac{R}{L}(X - X_{max}^{\mu}))^{R^{-2}} exp^{-\frac{X - X_{max}^{\mu}}{LR}}$$