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List of contributions on “transition”:
1) Self-trigger radio prototype array for GRAND (13/7/21, 18:00, Indico-ID: 381)
2) Combined fit of the energy spectrum and mass composition across the ankle with the data measured at the Pierre Auger 

Observatory (13/7/21, 18:00, Indico-ID: 547)
3) Results from the KASCADE-Grande data analysis (13/7/21, 18:00, Indico-ID: 565)
4) Cosmic-Ray Studies with the Surface Instrumentation of IceCube (13/7/21, 18:00, Indico-ID: 780)
5) The depth of the shower maximum of air showers measured with AERA (13/7/21, 18:00, Indico-ID: 1208)
6) The Giant Radio Array for Neutrino Detection (GRAND) project (14/7/21, 12:00, Indico-ID: 191)
7) Cosmic Ray Energy Spectrum measured by the TALE Fluorescence Detector (14/7/21, 12:00, Indico-ID: 851)
8) Measurement of carbon and oxygen fluxes in cosmic rays with the DAMPE experiment (14/7/21, 18:00, Indico-ID: 1136)
9) What if new physics sets in above 50 TeV? Cosmic-ray air-shower simulations with increased cross-section and 

multiplicity (14/7/21, 18:00, Indico-ID: 1170)
10)  Update on the large-scale cosmic-ray anisotropy search at the highest energies by the Telescope Array Experiment 

(15/7/21, 12:00, Indico-ID: 145)
11)  The Surface Array planned for IceCube-Gen2 (15/7/21, 18:00, Indico-ID: 442)
12)  Study of mass composition of cosmic rays with IceTop and IceCube (16/7/21, 18:00, Indico-ID: 659)
13)  Performance of SKA as an air shower observatory (1/7/21, 18:00, Indico-ID: 1122)
14)  Simulation study for the future IceCube-Gen2 surface array (20/7/21, 12:00, Indico-ID:  843)
15)  Highlight: Extragalactic cosmic ray sources (21/7/21, 14:00, Indico-ID: 1470)
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Cosmic ray energy spectrum
Broken power-law with three ‘main’ features:

● ‘knee’: softening at ~1015.4 eV
● ‘ankle’: hardening at ~1018.7 eV
● high-energy cut-off  beyond ~1019.6 eV 

Further more subtle features:
● hardening at ~1016.7 eV
● ‘2nd knee’: softening at ~1017.(0...4) eV
● ‘toe’: softening at ~1019.1 eV

Galactic cosmic rays (GCRs) for diffusive shock 
acceleration (DSA) in supernova remnants 
(SNR) dominate below ‘knee’ energies.
Extragalactic cosmic rays (EGCRs) dominate 
at energies above ‘ankle’.
Transition region (= ‘shin’) unexplained:

● unaccounted for flux
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Cosmic ray energy spectrum
Broken power-law with three ‘main’ features:

● ‘knee’: softening at ~1015.4 eV
● ‘ankle’: hardening at ~1018.7 eV
● high-energy cut-off  beyond ~1019.6 eV 

Further more subtle features:
● hardening at ~1016.7 eV
● ‘2nd knee’: softening at ~1017.(0...4) eV
● ‘toe’: softening at ~1019.1 eV

Galactic cosmic rays (GCRs) for diffusive shock 
acceleration (DSA) in supernova remnants 
(SNR) dominate below ‘knee’ energies.
Extragalactic cosmic rays (EGCRs) dominate 
at energies above ‘ankle’.
Transition region (= ‘shin’) unexplained:

● unaccounted for flux

see also: Thoudam, Astron.Astrophys. 595 (2016) A33
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Cosmic ray composition
Composition highly energy-
dependent:

● heavier beyond the ‘knee’
● maximum before ‘2nd knee’
● minimum just before ‘ankle’
● increasing mean mass at 

high-energy cut-off
Increasing mean mass 
→ rigidity-dependent change in:

● source properties (maximum 
acceleration energy)

● propagation regimes in 
magnetic fields
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see also: Thoudam, Astron.Astrophys. 595 (2016) A33
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Anisotropies
Dipole anisotropy:

● amplitude increases with energy
● no significant dipole between 

~1016.5 eV –1019 eV
● phase roughly constant in both 

energy ranges but shifts away from 
Galactic centre (GC) for highest 
energies
→ extragalactic origin likely

Small-scale anisotropies:
● amplitude and direction indicate 

strength of diffusion vs. advection: 
correlation with source direction
↔ strength of Galactic wind
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see also: Becker-Tjus, Physics Reports 872 (2020) pp.1-98
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“All” data in one look
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Composition:
● What explains ‘2nd knee’ if 

maximum mean mass is reached 
well before?

● Why does the composition become 
lighter up to the ‘ankle’?

Spectrum:
● How could GCRs be accelerated up 

to energies beyond the ‘knee’?
● What constraints are there on 

low-energy contribution of EGCRs?
● How are observables affected by 

the propagation in the Galactic 
magnetic field (GMF)?
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Galactic magnetic field (GMF)
GMF model: JF12 (ApJ 757 14x) with three 
components:

● Large-scale regular
● Large-scale random (striated)
● (Small-scale) random

GMF has three regions of differing field 
strength:

● Galactic plane (GP): ~ 1 – 10 µG
● Halo: ~ 0.1 – 1 µG 
● Edge of Galaxy: 10 – 100 nG

Gyroradius rg: 

Transition region = change in propagation 
regimes

● diffusive → ballistic propagation

,    R = E/Ze

x-z projection of JF12 field
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Galactic magnetic field (GMF)
Change of gyroradius with rigidity plus

typical length scales of GalaxyGMF model: JF12 (ApJ 757 14x) with three 
components:

● Large-scale regular
● Large-scale random (striated)
● (Small-scale) random

GMF has three regions of differing field 
strength:

● Galactic plane (GP): ~ 1 – 10 µG
● Halo: ~ 0.1 – 1 µG 
● Edge of Galaxy: 10 – 100 nG

Gyroradius rg: 

Transition region = change in propagation 
regimes

● diffusive → ballistic propagation

,    R = E/Ze
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Procedure: Simulation with CRPropa3
Forwardtrack protons:

● Backtracking GCRs leads to “degenerate” source position distribution (cannot 
differentiate between source in GP and particle crossing GP during propagation).

● Backtracking of EGCRs is not sensitive to flux modification.

No interactions:
● Only deflections → results can be scaled to all nuclei (important for composition)
● Rigidity range: lg(R/V) = 16.0 – 20.0 (large overlapping energy range for all nuclei)
● Injection spectrum: R-1

Galactic magnetic field model:
● JF12 (ApJ 757 14x; including regular, random and striated components)

JCAP 1605 (2016) no. 05, 038

mailto:a.kaeaepae@uni-wuppertal.de
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Sources and observers
Sources:

● GCRs:
● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

Galactic volume with GMF

mailto:a.kaeaepae@uni-wuppertal.de
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Sources:
● GCRs:

● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

Sources and observers
GCR source distribution
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Sources and observers
Sources:

● GCRs:
● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

EGCR source distribution
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Sources and observers
Sources:

● GCRs:
● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● Isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

Observer types: Earth and GP

mailto:a.kaeaepae@uni-wuppertal.de
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Injection/arrival direction deflection angle

θ = π/2 for lg(R/V) ≤ 18 → diffusive propagation
(see also: Erdman, Astropart.Phys. 85 (2016) 54-64)

GCRs forward tracked to Earth EGCRs backtracked from Earth
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Propagation time to Earth

Propagation time increases below rigidities of a few 1 EV.

GCRs forward tracked to Earth EGCRs backtracked from Earth

0.326  Myr

3.26  Myr

32.6  Myr

0.326  Myr

3.26  Myr

32.6  Myr
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Galactic residence time

Lowest-rigidity particles have residence times up to 100 Myr.

GCRs EGCRs reaching the GP

high R low R high R low R
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GCRs – Confinement in GP
Galactic trajectories (lg(R/V) = 15 – 16.5) Relative time spent in GP

Relative time spent in GP decreases with 
rigidity; inflection point at a few EV.

Decreasing confinement in GP with 
rigidity.

diffusive propagation
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GCRs – Confinement in GP
Relative time spent in GPGalactic trajectories (lg(R/V) = 16 – 18.5)

Relative time spent in GP decreases with 
rigidity; inflection point at a few EV.

Decreasing confinement in GP with 
rigidity.

transition region
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GCRs – Confinement in GP
Relative time spent in GP

Relative time spent in GP decreases with 
rigidity; inflection point at a few EV.

Galactic trajectories (lg(R/V) = 18 – 20)

Decreasing confinement in GP with 
rigidity.

ballistic propagation
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EGCRs – Shielding from vs. confinement in GP

Relative time spent in GP 
decreases with rigidity; 
inflection point at 
a few EV.
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(lg(R/V) = 15 – 16.5)

CR count decreases for 
smaller rigidities; 
inflection point at 
a few EV. 

Decreasing shielding 
from and confinement in 
GP with rigidity.

diffusive propagation
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EGCRs – Shielding from vs. confinement in GP
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GCRs – Flux suppression

Decreasing confinement 
→ flux reduction
Mixed composition 
→ heavier towards ‘ankle’
Arrival direction distribution: 
correlation with GP direction 
above 0.1 EV

Rigidity spectrum (sigmoid fit)
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GCRs – Heavier composition

Decreasing confinement 
→ flux reduction
Mixed composition 
→ heavier towards ‘ankle’
Arrival direction distribution: 
correlation with GP direction 
above 0.1 EV

Mean logarithm of mass number (sigmoid fit)

NOTE: Only propagation effects in GMF!
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GCRs – Correlation with GP direction

Decreasing confinement 
→ flux reduction
Mixed composition 
→ heavier towards ‘ankle’
Arrival direction distribution: 
correlation with GP direction 
above 0.1 EV

Arrival direction distribution above 0.1 EV
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Isotropic EGCRs – Flux conservation
Rigidity spectrum

Apparent flux suppression for large 
observer sphere sizes; effect vanishes 
as r → 0.
Increased confinement in GP 
compensates increased shielding:
→  flux conservation
Isotropic arrival direction

sm
aller o bserver  size
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Isotropic EGCRs – Isotropic arrival direction
Arrival direction distribution

Apparent flux suppression for large 
observer sphere sizes; effect vanishes 
as r → 0.
Increased confinement in GP 
compensates increased shielding:
→  flux conservation
Isotropic arrival direction NOTE: Structures not significant
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1 backtrack N anti-particles from Earth to edge 
of Galaxy in a given magnetic field:

● JF12 field (including random & striated 
components with default settings)

● N = 5 ∙107

2 ascribe HEALPix pixel n and m to each 
corresponding injection and arrival 
direction:

● 12 x 642 = 49152 pixels (maximum resolution in 
CRPropa)

Creation of Galactic lens
see also: Astropart.Phys. 85 (2016) 54-64 for lensing scheme &
Eichmann, JCAP04(2020)047 for parallel work
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3 count occurrence o of each 
injection/arrival direction pair (n,m)

● spans matrix L (lnm = o) which signifies the 
distribution of arrival directions m at the 
observer point for each injection direction n

4 matrix weighted by its 1-norm
(= number of backtracked particles N) 
defines lens

Creation of Galactic lens
see also: Astropart.Phys. 85 (2016) 54-64 for lensing scheme &
Eichmann, JCAP04(2020)047 for parallel work
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Anisotropic EGCRs – Galactic lensing
Injected flux Flux at EarthDistribution of moments above 1 EV

Rigidity spectrum at 
Earth → possible flux 
modification

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Injection direction 
distribution:
Pure dipole

99% confidence of isotropy

dipole
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Anisotropic EGCRs – Galactic lensing

Rigidity spectrum at 
Earth → possible flux 
modification

Injection direction 
distribution:
Pure single-point 
source (Cen A)

Injected flux Flux at EarthDistribution of moments above 1 EV

99% confidence of isotropy

dipole

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies
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Anisotropic EGCRs – Galactic lensing

Rigidity spectrum at 
Earth → possible flux 
modification

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Injection direction 
distribution:
Pure single-point 
source (minimum 
Galactic transparency; 
Galactic centre)

Injected flux Flux at EarthDistribution of moments above 1 EV

99% confidence of isotropy

dipole
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Anisotropic EGCRs – Galactic lensing

Rigidity spectrum at 
Earth → possible flux 
modification

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Injection direction 
distribution:
Pure single-point 
source (Galactic 
anti-centre)

Injected flux Flux at EarthDistribution of moments above 1 EV

99% confidence of isotropy
dipole
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Summary (1)
 

Propagation effects:
● Propagation in GMF for R = 10¹⁶ ²⁰⁻  V: change in propagation regimes from diffusive to 

ballistic
● Inflection point at a few EV (rg ~ width of GP) for all observed quantities

Effect on observables:
● GCRs: 

– Flux suppression towards higher rigidities; heavier mixed composition towards 
‘ankle’

– Correlation with direction of GP for rigidities above 0.1 EV
● EGCRs: 

– Isotropic injection: No flux suppression and isotropic arrival direction
– Anisotropic injection: Dipole and single point source → arrival direction 

isotropic below 1 EV, possible flux modification
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Summary (2)
 

Implications for transition:
● GCRs: 

– Propagation in GMF leads to ‘knee’-like feature
– Significant contribution of GCRs originating from GP 

disfavoured at highest energies of ‘shin’ region
● EGCRs: 

– Part of ‘ankle’ may be a propagation effect in GMF
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Thank you for your attention!
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Open questions

Propagation effects:
● How does the change in propagation regimes manifest?
● Do propagation features arise?

GCRs:
● How strongly are they contained/How easily do they diffuse out of the Galaxy?
● What effect does this have on the GCR flux?

EGCRs:
● How strongly are they shielded by the GMF?
● How are they deflected by the GMF once they have entered the Galactic plane?
● Does this lead to flux modification? 
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Liouville’s Theorem
● Objection to flux modification of 

EGCRs: Liouville’s Theorem
– If phase space density is 

conserved, so is flux
– BUT: If Liouville holds, then 

other quantities are 
conserved, i.a. first adiabtic 
invariant 
~ classical magnetic moment 
(APJ 842:54, APJ 830:19):
 

       = const.                        small⇒
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions

mailto:a.kaeaepae@uni-wuppertal.de


Alex Kääpä     a.kaeaepae@uni-wuppertal.de                     Transition from GCRs to EGCRs                                              B52
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Helium

Oxygen

Iron

total

GCRs – Total flux (data and sigmoid fit)

● Onset of flux suppression for mixed composition visible for sigmoid fit
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● Propagation time and 
fraction of space 
traversed increases to 
compensate shielding

On the modification of EGCR energy spectrum
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On the modification of EGCR energy spectrum

● Propagation time and 
fraction of space 
traversed increases to 
compensate shielding
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EGCRs – Opacity of Galaxy

● Regions of enhanced/suppressed transparency shift with rigdity

Injection direction of observed EGCRs
(lg(R/V) = 19-20)
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EGCRs – Opacity of Galaxy

● Regions of enhanced/suppressed transparency shift with rigdity

Injection direction of observed EGCRs
(lg(R/V) = 18-19)
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EGCRs – Opacity of Galaxy

● Regions of enhanced/suppressed transparency shift with rigdity

Injection direction of observed EGCRs
(lg(R/V) = 17-18)
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EGCRs – Opacity of Galaxy

● Regions of enhanced/suppressed transparency shift with rigdity

Injection direction of observed EGCRs
(lg(R/V) = 16-17)
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Injection direction of observed EGCRs
forward tracking

Galactic lensing – time reversibility

Injection direction distributions of backtracked and forward tracked protons match

Injection direction of observed EGCRs
backtracking
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Spectrum of lensed isotropic
injection distribution

Galactic lensing – testing lens

Lensed arrival direction distribution and spectrum of isotropic injection distribution is as 
expected.

Arrical direciton of lensed isotropic
injection distribution
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Anisotropic EGCRs – Galactic lensing

Rigidity spectrum at 
Earth → possible flux 
modification

Distribution of harmonic 
moments of arrival direction 
distribution above 1 EV 
→  strong isotropisation 
by GMF

Injection direction 
distribution:
Pure dipole

Injected flux Flux at EarthDistribution of moments above 1 EV
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