On the transition from Galactic to extragalactic cosmic rays Alex Kääpä

ICRC 2021 Berlin Plenary Talk Zoom conference 13th July 2021

BERGISCHE UNIVERSITÄT WUPPERTAL

SPONSORED BY THE

Federal Ministry of Education and Research

List of contributions on "transition":

- 1) Self-trigger radio prototype array for GRAND (13/7/21, 18:00, Indico-ID: 381)
- 2) Combined fit of the energy spectrum and mass composition across the ankle with the data measured at the Pierre Auger Observatory (13/7/21, 18:00, Indico-ID: 547)
- 3) Results from the KASCADE-Grande data analysis (13/7/21, 18:00, Indico-ID: 565)
- 4) Cosmic-Ray Studies with the Surface Instrumentation of IceCube (13/7/21, 18:00, Indico-ID: 780)
- 5) The depth of the shower maximum of air showers measured with AERA (13/7/21, 18:00, Indico-ID: 1208)
- 6) The Giant Radio Array for Neutrino Detection (GRAND) project (14/7/21, 12:00, Indico-ID: 191)
- 7) Cosmic Ray Energy Spectrum measured by the TALE Fluorescence Detector (14/7/21, 12:00, Indico-ID: 851)
- 8) Measurement of carbon and oxygen fluxes in cosmic rays with the DAMPE experiment (14/7/21, 18:00, Indico-ID: 1136)
- 9) What if new physics sets in above 50 TeV? Cosmic-ray air-shower simulations with increased cross-section and multiplicity (14/7/21, 18:00, Indico-ID: 1170)
- 10) Update on the large-scale cosmic-ray anisotropy search at the highest energies by the Telescope Array Experiment (15/7/21, 12:00, Indico-ID: 145)
- 11) The Surface Array planned for IceCube-Gen2 (15/7/21, 18:00, Indico-ID: 442)
- 12) Study of mass composition of cosmic rays with IceTop and IceCube (16/7/21, 18:00, Indico-ID: 659)
- 13) Performance of SKA as an air shower observatory (1/7/21, 18:00, Indico-ID: 1122)
- 14) Simulation study for the future IceCube-Gen2 surface array (20/7/21, 12:00, Indico-ID: 843)
- 15) Highlight: Extragalactic cosmic ray sources (21/7/21, 14:00, Indico-ID: 1470)

Cosmic ray energy spectrum

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond $\sim 10^{19.6} \, \mathrm{eV}$

Further more subtle features:

- hardening at ~ $10^{16.7}$ eV
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \text{ eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

Cosmic ray energy spectrum

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond $\sim 10^{19.6} \, \mathrm{eV}$

Further more subtle features:

- hardening at ~ $10^{16.7}$ eV
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \text{ eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

Cosmic ray energy spectrum

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond $\sim 10^{19.6} \, \mathrm{eV}$

Further more subtle features:

- hardening at ~ $10^{16.7}$ eV
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \text{ eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

18

 $\lg(E/eV)$

see also: Thoudam, Astron.Astrophys. 595 (2016) A33

Transition from GCRs to EGCRs

16

HiRes-I

HiRes-II

 10^{23}

14

20

Cosmic ray composition

Composition highly energydependent:

- heavier beyond the 'knee'
- maximum **before** '2nd knee'
- minimum just before 'ankle'
- **increasing mean mass at** high-energy **cut-off**

Increasing mean mass → **rigidity-dependent** change in:

- source properties (maximum acceleration energy)
- **propagation regimes** in magnetic fields

Cosmic ray composition

Composition highly energydependent:

- heavier beyond the 'knee'
- maximum **before** '2nd knee'
- minimum just before 'ankle'
- **increasing mean mass at** high-energy **cut-off**

Increasing mean mass → **rigidity-dependent** change in:

- source properties (maximum acceleration energy)
- **propagation regimes** in magnetic fields

Transition from GCRs to EGCRs

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Anisotropies

Dipole anisotropy:

- amplitude increases with energy
- no significant dipole between $\sim 10^{16.5} \text{ eV} 10^{19} \text{ eV}$
- phase roughly constant in both energy ranges but shifts away from Galactic centre (GC) for highest energies
 - → **extragalactic** origin likely

Small-scale anisotropies:

 amplitude and direction indicate strength of diffusion vs. advection: correlation with source direction
 strength of Galactic wind

see also: Becker-Tjus, Physics Reports 872 (2020) pp.1-98

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Anisotropies

Dipole anisotropy:

- amplitude increases with energy
- no significant dipole between $\sim 10^{16.5} \text{ eV} 10^{19} \text{ eV}$
- phase roughly constant in both energy ranges but shifts away from Galactic centre (GC) for highest energies
 - → **extragalactic** origin likely

Small-scale anisotropies:

 amplitude and direction indicate strength of diffusion vs. advection: correlation with source direction
 ⇔ strength of Galactic wind

see also: Becker-Tjus, Physics Reports 872 (2020) pp.1-98

Alex Kääpä a.kaeaepae@uni-wuppertal.de

"All" data in one look

Composition:

- What **explains '2nd knee'** if maximum mean mass is reached well before?
- Why does the composition become **lighter up to the 'ankle'**?

Spectrum:

- How could GCRs be accelerated up to energies beyond the 'knee'?
- What **constraints** are there on **low-energy** contribution of **EGCRs**? [♂]
- How are observables affected by the propagation in the Galactic magnetic field (GMF)?

"All" data in one look

Composition:

- What explains '2nd knee' if • maximum mean mass is reached well before?
- Why does the composition become • lighter up to the 'ankle'?

Spectrum:

- How could **GCRs** be accelerated up • to energies **beyond the 'knee'**?
- What **constraints** are there on • low-energy contribution of EGCRs? ੱ
- How are observables affected by ٠ the propagation in the Galactic magnetic field (GMF)?

Galactic magnetic field (GMF)

GMF model: JF12 (ApJ 757 14x) with three components:

- Large-scale regular
- Large-scale random (striated)
- (Small-scale) random

GMF has **three regions** of differing **field strength**:

- Galactic plane (GP): ~ 1 10 μG
- Halo: ~ $0.1 1 \mu G$
- Edge of Galaxy: 10 100 nG

Gyroradius r_{g} :

$$r_{\rm g}[{
m pc}] \approx 11 \cdot rac{R \, [{
m PV}] \cdot v_{\perp}/c}{B \, [\mu {
m G}]}, \quad R = E/Ze$$

Transition region = change in propagation regimes

• **diffusive** → **ballistic** propagation

x-z projection of JF12 field

Galactic magnetic field (GMF)

GMF model: JF12 (ApJ 757 14x) with three components:

- Large-scale regular
- Large-scale random (striated)
- (Small-scale) random

GMF has **three regions** of differing **field strength**:

- Galactic plane (GP): ~ 1 10 μG
- Halo: ~ 0.1 1 μG
- Edge of Galaxy: 10 100 nG

Gyroradius r_{g} :

$$r_{\rm g}[{
m pc}] \approx 11 \cdot \frac{R \,[{
m PV}] \cdot v_{\perp}/c}{B \,[\mu {
m G}]}, \quad R = E/Ze$$

Transition region = change in propagation regimes

• **diffusive** → **ballistic** propagation

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Change of gyroradius with rigidity plus typical length scales of Galaxy

Galactic magnetic field (GMF)

GMF model: JF12 (ApJ 757 14x) with three components:

- Large-scale regular
- Large-scale random (striated)
- (Small-scale) random

GMF has **three regions** of differing **field strength**:

- Galactic plane (GP): ~ 1 10 μG
- Halo: ~ 0.1 1 μG
- Edge of Galaxy: 10 100 nG

Gyroradius r_{g} :

$$r_{\rm g}[{
m pc}] \approx 11 \cdot rac{R \, [{
m PV}] \cdot v_{\perp}/c}{B \, [\mu {
m G}]}, \quad R = E/Ze$$

Transition region = change in propagation regimes

• **diffusive** → **ballistic** propagation

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Change of gyroradius with rigidity plus typical length scales of Galaxy

Procedure: Simulation with CRPropa3

JCAP 1605 (2016) no. 05, 038

Forwardtrack protons:

- Backtracking GCRs leads to "degenerate" source position distribution (cannot differentiate between source in GP and particle crossing GP during propagation).
- Backtracking of EGCRs is not sensitive to flux modification.

No interactions:

- Only deflections \rightarrow results can be scaled to all nuclei (important for composition)
- Rigidity range: lg(R/V) = 16.0 20.0 (large overlapping energy range for all nuclei)
- Injection spectrum: R^{-1}

Galactic magnetic field model:

• JF12 (ApJ 757 14x; including regular, random and striated components)

Sources:

Galactic volume with GMF

- GCRs:
 - homogeneously distributed in GP
 - isotropic injection direction distribution
- EGCRs:
 - **isotropic injection:** Lambertian injection direction distribution from Galactic shell

Observers:

- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- 'Earth': observer sphere at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

a.kaeaepae@uni-wuppertal.de Alex Kääpä

Sources:

GCR source distribution

- GCRs:
 - homogeneously distributed in GP
 - isotropic injection direction distribution
- EGCRs:
 - **isotropic injection:** Lambertian injection direction distribution from Galactic shell

Observers:

- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- **'Earth': observer sphere** at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Sources:

EGCR source distribution

- GCRs:
 - homogeneously distributed in GP
 - isotropic injection direction distribution
- EGCRs:
 - **isotropic injection:** Lambertian injection direction distribution from Galactic shell

Observers:

- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- 'Earth': observer sphere at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

a.kaeaepae@uni-wuppertal.de Alex Kääpä

Sources:

- GCRs:
 - homogeneously distributed in GP
 - isotropic injection direction distribution
- EGCRs:
 - **Isotropic injection:** Lambertian injection direction distribution from Galactic shell

Observers:

- **'Galactic plane**': **cylinder** of 100 pc height around Galactic centre with variable radius
- **'Earth': observer sphere** at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Observer types: Earth and GP

Propagation Effects

Injection/arrival direction deflection angle

 $\theta = \pi/2$ for $\lg(R/V) \le 18 \rightarrow$ diffusive propagation (see also: Erdman, Astropart.Phys. 85 (2016) 54-64)

Alex Kääpä a.kaeaepae@uni-wuppertal.de

GCRs forward tracked to Earth

Transition from GCRs to EGCRs

EGCRs backtracked from Earth

Propagation time to Earth

Propagation time increases below rigidities of a few 1 EV.

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Galactic residence time

Lowest-rigidity particles have residence times up to 100 Myr.

Alex Kääpä a.kaeaepae@uni-wuppertal.de

GCRs – Confinement in GP

Decreasing confinement in GP with rigidity.

Relative time spent in GP decreases with rigidity; **inflection point at a few EV.**

GCRs – Confinement in GP

Decreasing confinement in GP with rigidity.

Relative time spent in GP decreases with rigidity; **inflection point at a few EV.**

GCRs – Confinement in GP

Decreasing confinement in GP with rigidity.

Relative time spent in GP decreases with rigidity; **inflection point at a few EV.**

EGCRs – Shielding from vs. confinement in GP

Decreasing shielding from and confinement in GP with rigidity. CR count decreases for smaller rigidities; inflection point at a few EV. Relative time spent in GP decreases with rigidity; inflection point at a few EV.

EGCRs – Shielding from vs. confinement in GP

Decreasing shielding from and confinement in GP with rigidity. CR count decreases for smaller rigidities; inflection point at a few EV. Relative time spent in GP decreases with rigidity; inflection point at a few EV.

EGCRs – Shielding from vs. confinement in GP

Decreasing shielding from and confinement in GP with rigidity. CR count decreases for smaller rigidities; inflection point at a few EV. Relative time spent in GP decreases with rigidity; inflection point at a few EV.

Effect on observables

GCRs – Flux suppression

Rigidity spectrum (sigmoid fit)

Decreasing confinement → **flux reduction**

Mixed composition → heavier towards 'ankle'

Arrival direction distribution: **correlation with GP direction** above 0.1 EV

GCRs – Heavier composition

Mean logarithm of mass number (sigmoid fit)

Decreasing confinement → **flux reduction**

Mixed composition → heavier towards 'ankle'

Arrival direction distribution: **correlation with GP direction** above 0.1 EV

GCRs – Correlation with GP direction

Arrival direction distribution above 0.1 EV

Mixed composition → heavier towards 'ankle'

Arrival direction distribution: **correlation with GP direction** above 0.1 EV

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Isotropic EGCRs – Flux conservation

Rigidity spectrum

Apparent flux suppression for large observer sphere sizes; effect vanishes as $r \rightarrow 0$.

Increased confinement in GP compensates increased shielding:

 \rightarrow flux conservation

Isotropic arrival direction

Isotropic EGCRs – Isotropic arrival direction

Apparent flux suppression for large observer sphere sizes; effect vanishes as $r \rightarrow 0$.

Increased confinement in GP compensates increased shielding:

→ flux conservation

Isotropic arrival direction

Arrival direction distribution

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Galactic lensing

Creation of Galactic lens

see also: Astropart. Phys. 85 (2016) 54-64 for lensing scheme & Eichmann, JCAP04 (2020)047 for parallel work

- **1 backtrack** *N* anti-particles from Earth **to edge of Galaxy in** a given **magnetic field:**
 - JF12 field (including random & striated components with default settings)
 - $N = 5 \cdot 10^7$
- **2 ascribe** HEALPix **pixel** *n* and *m* **to** each corresponding **injection and arrival direction:**
 - $12 \ge 64^2 = 49152$ pixels (maximum resolution in CRPropa)

Creation of Galactic lens

see also: Astropart. Phys. 85 (2016) 54-64 for lensing scheme & Eichmann, JCAP04 (2020)047 for parallel work

- **3 count occurrence** *o* **of each** injection/arrival direction **pair** (*n*,*m*)
 - spans matrix $L(l_{nm} = o)$ which signifies the **distribution of arrival directions** m at the observer point for each **injection direction** n
- 4 matrix weighted by its 1-norm
 (= number of backtracked particles N)
 defines lens

dipole 99% confidence of isotropy Amplitude r 10^{-2} 10^{-3} 9 10 11 12 13 14 15 16 17 18 19 20 Harmonic moment *l*

Injection direction distribution: **Pure dipole**

- surviving dipole in arrival direction distribution above 1 EV
- strong isotropisation by GMF at lower energies

Rigidity spectrum at Earth \rightarrow **possible flux** modification

Injected flux

Distribution of moments above 1 EV

Flux at Earth

Injection direction distribution: **Pure single-point source** (Cen A)

- surviving dipole in arrival direction distribution above 1 EV
- strong isotropisation by GMF at lower energies

Rigidity spectrum at Earth → **possible flux modification**

1 2 3

dipole

 10^{-1}

Amplitude r

Distribution of moments above 1 EV

Flux at Earth

Injection direction distribution: **Pure single-point** source (minimum Galactic transparency; Galactic centre)

surviving dipole in arrival direction distribution above 1 EV

Harmonic moment

0

strong isotropisation by GMF at lower energies

Rigidity spectrum at Earth \rightarrow **possible flux** modification

20

-75'

0.2

0.0

0.4

Flux at Earth

Injection direction distribution: **Pure single-point** source (Galactic anti-centre)

surviving dipole in arrival direction distribution above 1 EV

strong isotropisation by GMF at lower energies

Rigidity spectrum at Earth \rightarrow **possible flux** modification

0.6

0.8

1.0

Summary (1)

Propagation effects:

- Propagation in GMF for $R = 10^{16-20}$ V: change in propagation regimes from diffusive to ballistic
- Inflection point at a few EV ($r_{\rm g}$ ~ width of GP) for all observed quantities

Effect on observables:

- GCRs:
 - **Flux suppression** towards higher rigidities; **heavier mixed composition** towards 'ankle'
 - Correlation with direction of GP for rigidities above 0.1 EV
- EGCRs:
 - Isotropic injection: No flux suppression and isotropic arrival direction
 - Anisotropic injection: Dipole and single point source → arrival direction isotropic below 1 EV, possible flux modification

Implications for transition:

- GCRs:
 - Propagation in GMF leads to 'knee'-like feature
 - Significant contribution of **GCRs originating from GP disfavoured** at highest energies of 'shin' region
- EGCRs:
 - Part of 'ankle' may be a propagation effect in GMF

Thank you for your attention!

Open questions

Propagation effects:

- How does the change in propagation regimes manifest?
- Do propagation features arise?

GCRs:

- How **strongly** are they **contained**/How easily do they diffuse out of the Galaxy?
- What **effect** does this have **on** the GCR **flux**?

EGCRs:

- How **strongly** are they **shielded** by the GMF?
- How are they **deflected** by the GMF **once** they have **entered** the **Galactic plane**?
- Does this lead to **flux modification**?

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Liouville's Theorem

- Objection to flux modification of EGCRs: Liouville's Theorem
 - If phase space density is conserved, so is flux
 - BUT: If Liouville holds, then other quantities are conserved, i.a. first adiabtic invariant

~ classical magnetic moment (APJ 842:54, APJ 830:19):

$$\mu = \frac{e}{2 \, m \pi \, c} \cdot I = \text{const.} \Rightarrow r_{\mu} = \frac{\sigma_{\mu}}{\langle \mu \rangle} \text{ small}$$

Alex Kääpä a.kaeaepae@uni-wuppertal.de

GCRs – Total flux (data and sigmoid fit)

• Onset of flux suppression for mixed composition visible for sigmoid fit

Alex Kääpä a.kaeaepae@uni-wuppertal.de

On the modification of EGCR energy spectrum

 Propagation time and fraction of space traversed increases to compensate shielding

Alex Kääpä a.kaeaepae@uni-wuppertal.de

On the modification of EGCR energy spectrum

 Propagation time and fraction of space traversed increases to compensate shielding

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Injection direction distributions of backtracked and forward tracked protons match

Lensed arrival direction distribution and spectrum of isotropic injection distribution is as expected.

Injected flux

Flux at Earth

10⁻² 10⁻³ 10⁻³ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Harmonic moment *l*

Injection direction distribution: **Pure dipole**

Distribution of harmonic moments of arrival direction distribution above 1 EV → strong isotropisation by GMF

Rigidity spectrum at Earth → **possible flux modification**