

Sub-GeV dark matter and neutrino searches with Skipper-CCDs: status and prospects.

A. M. Botti^{a,b*}, M. Cababié^{a,b}, J. Estrada^b, G. Fernandez-Moroni^b, M. Sofo Haro^{b,c} and J. Tiffenberg^b

a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física b Fermi National Accelerator Laboratory, PO Box 500, Batavia IL, 60510, USA c Centro Atómico Bariloche, CNEA/CONICET/IB, Bariloche, Argentina

PoS(ICRC2021)505

* presenter abotti@df.uba.ar

Sub-GeV dark matter and neutrino searches with Skipper-CCDs: status and prospects.

A. M. Botti^a, M. Cababié^{a,b} J. Estrada^b, G. Fernandez-Moroni^b M. Sofo Haro^{b,c} and J. Tiffenberg^b

- a. Departmento de Física, FCEyN, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- b. Fermi National Accelerator Laboratory, PO Box 500, Batavia IL, 60510, USA
- c. Centro Atómico Bariloche, CNEA/CONICET/IB, Bariloche, Argentina

Abstract: Thick fully-depleted charge-coupled devices (CCDs) with high-resistivity silicon are used in a wide range of scientific applications, from particle detection to astronomical imaging. Their low noise and high charge collection efficiency allow us to reach unprecedented sensitivity to physical processes with low-energy transfers. The newly-developed Skipper-CCD enhances this sensitivity by reducing the read-out noise reaching a sub-electron resolution. In this work, we introduce the fundamentals of the skipper-CCD operation and the prospects for both sub-GeV dark matter searches and the detection of coherent elastic neutrinonucleus scattering. A brief discussion of the challenges associated with the construction of the foreseen detectors with multi-kilogram target mass is also presented

1. Charge Couple Devices (CCDs)

Pixel array on silicon substract

Borad range of industrial and scientific applications

Incident radiation produces electron-hole pairs in silicon bulk

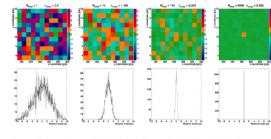
- · Nuclear or electron recoil
- · Scattering or absortion

Sensitive to low-energy transfers (silicon bandgap)

Implemented in rare-event searches

2. Skipper-CCD read-out

Charges in electron bulk acelerated to surface


Vertical clocks to transport charges to read-out stage

Correlated double sampling to

Non-disruptive measurement allows multiple reads

Uncorrelated Gaussian noise follows reduce high-frequency noise

0.055 e⁻ noise with 4000 samples

Empty pixels distinguishable from

pixels with 1 charge

Figure 4: (Top) cropped images obtained with a non-illuminated skipper-CCD using 1, 10, 116 and 4000 samples. (Bottom) charge histogram for image pixels on top.

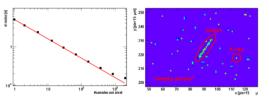


Figure 5: (Left) read-out noise as a function of number of samples. The red line is the expectation given the noise for one read. (Right) cropped image obtained using 4000 samples.

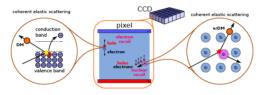


Figure 1: (Top) image of prototype skipper-CCD used in dark-matter searches. (Bottom) schematics of CCD working principle

4. Performance

Sub-electron resolution

Absolute calibration possible without a dedicated setup

Distinguishable number of charges in each interaction

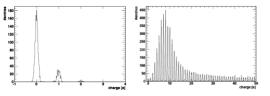


Figure 5: charge distribution for a non-illuminated CCD (left) and illuminated with a LED (right)

5. Prospects in rare-events searches Dark-matter direct: Dark-matter modulation:

Figure 2: Schemtics of Skipper-CCD read-out. (Top) charge transport from pixel to read-out

stage (Bottom) multiple non-disruptive reads of the charge.

· SENSEI: 100 a by 2021

DAMIC-M: 1 kg by 2024

OSCURA: 10 kg by 2027

· DM²: 0.1 g at south hemisphere Reactor neutrinos: CONNIE, vIOLETA

Itage diff. due to

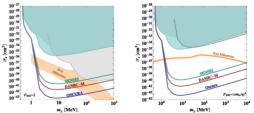


Figure 6: expectations for sub-GeV dark-matter detection with skipper-CCDs compared with current limits (gray and cyan shadows) for light (left) and heavy (right) mediators, Adapted from OSCURA at SNOWMASS

SUMMARY

3. Read-out noise

ow-frequency read-out noise

Multiple measurements to control

- √ Sub-electron resolution achieved with Skipper-CCDs
- √ Sensitive to energy transfers as low as silicon bandgap
- Absolute calibration possible without a dedicated setup
- ✓ New generation of detectors projected for sub-GeV dark-matter and reactor neutrinos

More information and references here

1. Charge Couple Devices (CCDs)

Pixel array on silicon substract

Borad range of industrial and scientific applications

Incident radiation produces electron-hole pairs in silicon bulk

- · Nuclear or electron recoil
- · Scattering or absortion

Sensitive to low-energy transfers (silicon bandgap)

Implemented in rare-event searches

Charges in electron bulk acelerated to surface

Vertical clocks to transport charges to read-out stage

Non-disruptive measurement allows multiple reads

Horizontal clocks to move charges to floating gate

Correlated double sampling to reduce high-frequency noise

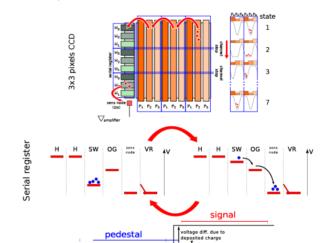


Figure 2: Schemtics of Skipper-CCD read-out. (Top) charge transport from pixel to read-out stage (Bottom) multiple non-disruptive reads of the charge.

2. Skipper-CCD read-out

3. Read-out noise

Multiple measurements to control ow-frequency read-out noise

0.055 e⁻ noise with 4000 samples

Uncorrelated Gaussian noise follows σ_1/\sqrt{N}

Empty pixels distinguishable from pixels with 1 charge

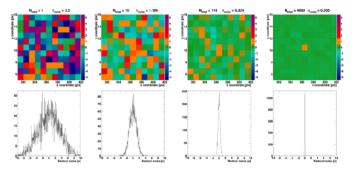


Figure 4: (Top) cropped images obtained with a non-illuminated skipper-CCD using 1, 10, 116 and 4000 samples. (Bottom) charge histogram for image pixels on top.

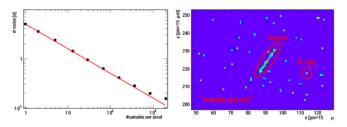


Figure 5: (Left) read-out noise as a function of number of samples. The red line is the expectation given the noise for one read. (Right) cropped image obtained using 4000 samples.

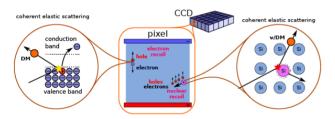


Figure 1: (Top) image of prototype skipper-CCD used in dark-matter searches. (Bottom) schematics of CCD working principle.

4. Performance

Sub-electron resolution

Distinguishable number of charges in each interaction

Absolute calibration possible without a dedicated setup

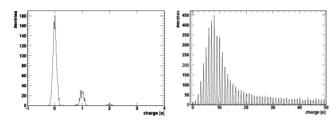
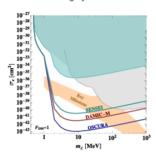


Figure 5: charge distribution for a non-illuminated CCD (left) and illuminated with a LED (right)

5. Prospects in rare-events searches


Dark-matter direct:

- · SENSEI: 100 g by 2021
- DAMIC-M: 1 kg by 2024
 OSCURA: 10 kg by 2027

Dark-matter modulation:

· DM²: 0.1 g at south hemisphere

Reactor neutrinos: CONNIE, vIOLETA

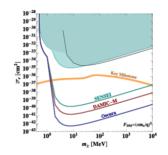


Figure 6: expectations for sub-GeV dark-matter detection with skipper-CCDs compared with current limits (gray and cyan shadows) for light (left) and heavy (right) mediators. Adapted from OSCURA at SNOWMASS

SUMMARY

- √ Sub-electron resolution achieved with Skipper-CCDs
- √ Sensitive to energy transfers as low as silicon bandgap
- √ Absolute calibration possible without a dedicated setup
- New generation of detectors projected for sub-GeV dark-matter and reactor neutrinos

More information and references <u>here</u>