Sub-GeV dark matter and neutrino searches with Skipper-CCDs: status and prospects.

Executive Summary

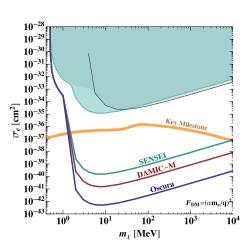
A. M. Botti^{a,b}, M. Cababié^{a,b}, J. Estrada^b, G. Fernandez-Moroni^b, M. Sofo Haro^{b,c}, and J. Tiffenberg^b

What is this contribution about?

We describe the working principle of Skipper-CCDs and the prospects to implement them in rare-events searches.

Why is it relevant/interesting?


With Skipper-CCD we achieved an unprecedented sensitivity to explore physics processes with energy transfers as low as the silicon bandgap; a promising scenario for sub-GeV dark-matter searches


What has been done?

We have achieved a sub-electron resolution, which allows us to separate different backgrounds from a signal of a few electrons.

What is the result?

With the next generations of Skipper-CCD detectors, we can explore a region in the parameter space up to seven orders of magnitude lower than the current limits in the sub-GeV mass range.

^a Department of Physics, FCEyN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina

^b Fermi National Accelerator Laboratory, PO Box 500, Batavia IL, 60510, USA

^c Centro Atómico Bariloche, CNEA/CONICET/IB, Bariloche, Argentina