Results on Low-Mass WIMPs from a 11 kg d Target Exposure of DAMIC at SNOLAB

International Cosmic Ray Conference 2021

Outline:

- 1. DAMIC at SNOLAB
- 2. Background Rejection
- 3. Background Model
- 4. WIMP Search
- 5. Future Plans

Michelangelo Traina on behalf of the DAMIC collaborations LPNHE, Sorbonne Université, Paris (FR)

DAMIC Collaboration

DAMIC AT SNOLAB

- **DArk Matter In CCDs** collaboration (since 2011)
- Setup beneath 2 km of granite at SNOLAB (Canada) (6 km water equivalent)

Charge-Coupled Devices

- Extremely low noise and dark current \Rightarrow sensitive to $\sim e^{-}$ ____
- 3D track reconstruction and particle discrimination capability

...for Dark Matter?

- Record thickness + several CCDs \Rightarrow massive target (~40 g) 7 operational 675 μm
- Different DM search options:
 - WIMP-nucleus coherent scattering
 - Hidden sector light DM-e⁻ interactions

- a) Packaged DAMIC CCD
- b) Copper CCD housing
- c) In-vacuum setup
- d) Pb and polyethylene outer shielding

CHARGE-COUPLED DEVICES

DAMIC science-grade CCDs:

- PolySi gate, buried channel structure
- Fully depleted (40 V substrate)
- High resistivity $\sim 10 \text{ k}\Omega\cdot\text{cm}$
- Record thickness: 675 μm
- Performance:
- Charge transfer inefficiency $< 10^{-6}$
- Readout noise ~1.6 e- (6 eV)
- Dark current < 10⁻³ e⁻/pix/day

BACKGROUNDS AT DAMIC

How we deal with backgrounds:

- Underground operation
- Material selection (assays)
- In situ shielding
- ▶ Discrimination and quantification
 of contaminants → bkg model

Background contributions:

- ~ 55% in-CCD contaminants
- ~ 30% OFHC Copper
- ~ 15% from various detector materials
 (lead shielding, flex cables, etc.)

Backgrounds Pie Chart

Main Surface Contaminants

Decay Sequence	$t_{1/2}$	Q-value
$^{210}\text{Pb} \longrightarrow ^{210}\text{Bi} + \beta^- + \text{IC}/\gamma$	22.3 y	63.5 keV
$^{210}\text{Bi} \longrightarrow ^{210}\text{Po} + \beta^-$	5.01 d	$1.16 { m MeV}$

Main Bulk Contaminants

Decay Sequence	$t_{1/2}$	Q-value
$3^{32}\text{Si} \longrightarrow {}^{32}\text{P} + \beta^{-}$	150 y	225 keV
$^{32}P \longrightarrow ^{32}S \text{ (stable)} + \beta^-$	14.3 d	$1.71 { m MeV}$
Decay	$t_{1/2}$	Q-value
$^{3}\mathrm{H} \longrightarrow ^{3}\mathrm{He} + \beta^{-}$	12.3 y	$18.6 \mathrm{keV}$

- 210 Pb: < 160 µBq/kg
- ${}^{32}Si: 140 \pm 30 \,\mu Bq/kg$
- 238 U: < 11 µBq/kg
- 232 Th: < 7.3 µBq/kg

BACKGROUND MODELING

Background model construction:

- Decay+tracking across detector geometry with Geant4
- **CCDs response simulation:** charge generation and (partial) collection/transport, pixelation, binning and readout noise
- **Clustering** \rightarrow **E**, σ_x distribution
- Binned likelihood fit in WIMP-safe region (6-20 keV) \implies extrapolate in ROI (0-6 keV)

kg⁻¹ d

Rate (ke V_{ee}^{-1}

Profile likelihood ratio search

Paris

Possible Interpretations of the Excess

- Missing front component in bkg model
- Unaccounted detector front-side effect
- New physics (e.g., dark matter?)

WIMP SEARCH

Systematic Checks

- Front- and back-surface events assessment
- Likelihood fit with known input parameters
- Parallel Markov Chain MC analysis
- Local vs Global significance tests

WIMP SEARCH LIMITS

DAMIC at SNOLAB:

- WIMP Search paper published on PRL: Phys. Rev. Lett. 125, 241803
- Spatial coincidence analysis paper published on JINST: JINST 16 (2021) 06, P06019
- Paper detailing background model construction in the making
- Upcoming setup upgrade to investigate excess: two DAMIC-M $6k \times 4k$ and four SENSEI $1k \times 6k$ skipper CCDs arXiv:1706.00028

DAMIC at Modane:

Kg-scale skipper CCD detector striving for 0.1 dru background rates

See ICRC contribution by Claudia De Dominicis: Simulations and background estimates for the DAMIC-M experiment

SUMMARY & FUTURE PLANS

Thanks for your attention. It was a pleasure to tell you about us!

