

Studying High-Mass Microquasars with HAWC

Chang Dong Rho (U. of Seoul), Ke Fang (U. of Wisconsin-Madison), Se Yeon Hwang (U. of Seoul), and Youngwan Son (U. of Seoul)

for the HAWC Collaboration, Astrophys.J.Lett. 912 (2021) 1, L4 (arXiv:2101.08945)

ICRC 2021 16/07/21

HMMQ List and Basic Properties

Astrophys.J.Lett. 912 (2021) 1, L4

 Table 1. List of HMXB Microquasars in HAWC's FOV

Name	RA	DEC	T_*	R_*	d_*	Jet kinetic power $L_{\rm jet}$	Distance D
			$[10^4 \text{ K}]$	$[R_{\odot}]$	[AU]	$[\mathrm{ergs}^{-1}]$	[kpc]
LS 5039^a	18:26:15.1	$-14^{\circ}50'54''$	3.9	9.3	0.1	$10^{36} e$	2.9
CYG X-1 ^{b}	19:58:21.7	$+35^{\circ}12'06"$	3.1	20	0.2	$(4-14) \times 10^{36}$	2.2
CYG X- 3^c	20:32:26.5	$+40^{\circ}57'09"$	4-5	$<\!\!2$	0.02	10^{38}	7.0
SS 433^d	19:11:49.6	$+04^{\circ}58'58''$	3.25	5.5^{f}	0.5	10^{39}	5.5

- HMMQs may have common multi-wavelength emission mechanism
- Study HMMQs as one type of species by applying stacked analysis
- Study each HMMQ individually (gamma-ray flux upper limits)

High Altitude Water Cherenkov Observatory

- Latitude of 19°N, altitude of 4,100m
- Pico de Orizaba near Puebla, Mexico
 - 300 WCDs geometrical area of 22,000m²
 - 2 sr F.o.V. and >95% duty cycle
- 300 GeV 100 TeV

Dataset and Analysis Technique

- Used 1,523 days of HAWC data:
 - Fitting for the flux norm (point source; simple power law)

- Two main analysis techniques used:
 - Individual HMMQ fits uses four quasi-differential energy bins with spectral index fixed at -2.7.
 - For stacking analysis, fits at $E_{piv} = 7$ TeV, scanning through spectral index between -2.0 and -3.0 (interval of 0.1)

SED for HMMQs with 95% C.I. from HAWC

SED for HMMQs with 95% C.I. from HAWC

Our upper credible intervals < 2σ above expected HAWC limits -> no clear detection

Two Scenarios for Stacked Analysis

- This analysis relies on stacked likelihood of many independent fits of numerous sources, comparing the same physics model to the data of multiple sources
- The contribution factor decides how the fit to each source contributes to the total likelihood (model dependent)
- Scenario I: γ -ray luminosity is proportional to the kinetic power of the jets
- Scenario II: γ -rays are produced when relativistic electrons accelerated by the jets upscatter optical photons from the donor star

Scenario I – jet powered

- We assume γ -ray luminosity proportional to jet power $L_{\gamma} = \epsilon_{\gamma} L_{
 m jet}$
- γ -ray flux for scenario I is given by

$$\Phi_{\gamma} = \frac{\epsilon_{\gamma} L_{\rm jet}}{4\pi D^2} K_p \left(\frac{E}{E_{\rm piv}}\right)^{-p}$$
 Contribution Factor

• The 95% credible interval of jet emission efficiency above 1 TeV is

$$\epsilon_{\gamma}^{\rm UL} = 5.4 \times 10^{-6}$$

with a best fit spectral index of p = 2.2

University of Seoul

Scenario II – powered by magnetic field

• The inverse-Compton and synchrotron fluxes are connected by energy densities of magnetic field and radiation field of donor star.

$$\frac{F_{\rm syn}}{F_{\rm IC}} \approx \frac{u_B}{u_0 f_{\rm KN}}$$

• γ -ray flux for scenario II is given by

Contribution Factor
$$\Phi_{\gamma} = \frac{F_{\text{syn}} u_0 f_{\text{KN}}}{u_B} K_p \left(\frac{E}{E_{\text{piv}}}\right)^{-p}$$

Scenario II – powered by magnetic field

• Lower limit on the magnetic field strength is derived to be

$$B^{\rm LL} = 22 \, \left(\frac{\epsilon_{\rm syn}}{10\,\%}\right)^{1/2} \, \mathrm{G}$$

 $\epsilon_{
m syn}=$ fraction of observed X-ray and MeV gamma-ray flux due to synchrotron emission

 Strong B field found by our stacking analysis suggests that the X-ray to MeV gamma-ray flux is not dominated by synchrotron radiation of VHE electrons.

Time Dependent Analysis

LS 5039 – 3.9 days

Cyg X-1 – 5.6 days

Cyg X-3 – 0.2 days

Periodogram not useful since period < 1 day

SS 433 – 13.1 days

- No significant TeV γ -ray emission detected from the known HMMQs but most stringent limits are provided for > 10 TeV
- Derived upper limit on the γ-ray emission efficiency above 1 TeV, which also constrains the HE neutrino emission efficiency; implies that neutrino detection challenging for current neutrino detectors

 $\epsilon_{\nu} \approx 3\epsilon_{\gamma}/2$

- Constrained contribution of synchrotron emission by relativistic electrons between 10 keV and 10 MeV for the four HMMQs
- No orbital modulation in flux observed with HAWC daily maps

Back Up

High-Mass Microquasar (HMMQ)

Contribution Factor for Stacked Analysis

• This analysis relies on stacked likelihood of many independent fits of numerous sources.

$$\ln L\left(N_{obs}^{j,B}\middle|\Theta\right) = \sum_{B=1}^{9} \sum_{j=1}^{m} \ln P\left(N_{obs}^{j,B}\middle|\Theta\right)$$

- Flux norm (A) will be set as a free parameter. $\frac{dN}{dE} = A \left(\frac{E}{E_{res}}\right)^{-\alpha}$
- Since all independent sources are stacked, we find and apply a suitable contribution factor based on a physics model.
- Spectrum: power law * step function * constant (contribution factor)

University of Seoul

Chang Dong Rho

Quasi-differential Energy Bins

Table 2. Quasi-differential energy bins

Energy Bin	Energy Range	Pivot Energy	
	[TeV]	[TeV]	
1	1.0-3.2	1.8	
2	3.2 - 10.0	5.6	
3	10.0-31.6	17.8	
4	31.6 - 100.0	56.2	

Significance Maps – RHMXBs

SS 433

Significance Maps (Residual) – RHMXBs

No complex modelling. Used 3HWC catalog to fit and subtract sources

Note: Gaussian morphology used to fit extended sources by default University of Seoul

Source Properties for Scenario II

Table 4. Derived Source Properties.

Name	u_0	$F_{\rm KN}$ at $E_{e,{ m bk}}$	$E_{\rm syn,bk}$	$E_{\rm e,bk}$
	$[\mathrm{erg}\mathrm{cm}^{-3}]$		$[\mathrm{keV}]$	$[\mathrm{TeV}]$
LS 5039	820	4.9×10^{-5}	2100	6.9
CYG X-1	380	1.1×10^{-4}	1400	5.6
CYG X-3	2560	1.55×10^{-5}	4620	10.2
SS 433	5.5	7.2×10^{-3}	6.2	0.4

*Derived assuming B = 1 G

Other Studies

- Log parabola model used to test that γ -ray spectrum may not follow a power law

$$\Phi_{\gamma} = \frac{F_{\rm syn} \, u_0 \, f_{\rm KN}}{u_B} \, K_l \, \left(\frac{E}{E_{\rm piv}}\right)^{-\alpha_l - \beta_l \, \log(E/E_{\rm piv})}$$

• $\gamma\gamma$ pair production absorption is negligible for tail-on interaction (at < 100 TeV) and we predict a factor of unity attenuation overall $\frac{10^2}{-\frac{\text{Hed-on interaction }(\mu = -1)}{\frac{10^2}{-\frac{10^2}$

