

Gamma Rays from Fast Black-Hole Winds

Chris Karwin Clemson University

with Marco Ajello, Rebecca Diesing, Damiano Caprioli, and George Chartas

On behalf of the *Fermi*-LAT collaboration

ICRC July 13, 2021

*Paper submitted to ApJ arxiv 2105.11469

Outline

- Black-Hole winds, i.e. ultra fast outflows (UFOs)
- Stacking Analysis
- Results
- Physical Implications
- Summary

AGN Outflows at Different Scales

UFOs

- UFOs have been found in both radio-load and radio-quiet AGN through X-ray observations (*Suzaku, XMM-Newton*).
- They are identified from blueshifted Fe K-shell absorption lines around E > 7 keV.

UFOs

5

UFOs

Gamma-rays from UFOs

- The outflowing gas should interact with the interstellar medium, generating shock waves, which will accelerate cosmic rays via diffuse shock acceleration, similar to SNRs.
- Potential to discover new gamma-ray source class.
- UFOs likely play a significant role in different feedback processes, including the co-evolution of a galaxy and its central SMBH, as well as the cold outflows observed on galactic scales
- UFOs may contribute to the EGB and the IceCube neutrino flux.

UFO Sample

- UFOs in the local Universe are predicted to have a gamma-ray luminosity of ~1e39-1e40 erg/s, which puts them below the LAT sensitivity, and is why the haven't been detected yet
- We therefore use a stacking technique to analysis the UFOs as a population.
- Our sample consists of 11 radio-quiet UFO sources with z < 0.1 and v > 0.1c.

NGC 7582	NGC 4151	Ark 120	MCG 5-23-16										
				Name	$\mathop{\rm RA}\limits_{\left[\circ\right]}$	DEC [0]	Туре	$\begin{array}{c} \text{Redshift} \\ [z] \end{array}$	Velocity $[v/c]$	$\frac{\log M_{\rm BH}}{[M_{\odot}]}$	$\frac{\log \dot{E}_K^{\rm Min}}{[{\rm erg~s}^{-1}]}$	$\frac{\log \dot{E}_K^{\text{Max}}}{[\text{erg s}^{-1}]}$	$\log L_{\rm Bol} [\rm erg \ s^{-1}]$
0		• • •	•	Ark 120 ^{<i>a</i>,<i>c</i>}	79.05	-0.15	Sy1	0.033	0.27	8.2 ± 0.1	> 43.1	46.2 ± 1.3	45.0^{f} 44.2^{h}
				$\begin{array}{l} {\rm MCG}\text{-}5\text{-}23\text{-}16^{a,c} \\ {\rm NGC} \ 4151^{a,c} \end{array}$	$146.92 \\ 182.64$	-30.95 39.41	Sy2 Sy1	0.0084 0.0033	$\begin{array}{c} 0.12\\ 0.105\end{array}$	7.6 ± 1.0 7.1 ± 0.2	$42.7 \pm 1.0 \\ > 41.9$	$\begin{array}{c} 44.3 \pm 0.2 \\ 43.1 \pm 0.5 \end{array}$	$ \begin{array}{r} 44.0^{k} \\ 44.1^{k} \\ 44.1^{g} \\ 42.9^{h} \end{array} $
PG1211+143	NGC 4507	NGC 5506	Mrk 290										$ \begin{array}{r} 43.9^{i} \\ 42.9^{j} \\ 43.2^{j^{*}} \\ 43.4 \end{array} $
	()			PG 1211+143 ^{<i>a,c</i>}	183.57	14.05	Sy1	0.081	0.13	8.2 ± 0.2	43.7 ± 0.2	46.9 ± 0.1	45.7f 44.8h 44.7j 45.0j* 45.1
				NGC $4507^{a,c}$	188.90	-39.91	Sy2	0.012	0.18	6.4 ± 0.5	> 41.2	44.6 ± 1.1	44.3^{e}
Mrk 509	SW 12127 4+5654	MR 2251-178		NGC 5506 ^{5,a} Mrk 290 ^{a,c}	213.31 233.97	-3.21 57.90	Sy1.9 Sv1	0.006 0.030	0.25	7.3 ± 0.7 7.7 ± 0.5	43.3 ± 0.1 43.4 ± 0.9	44.7 ± 0.5 45.3 ± 1.2	44.3^{e} 44.4^{e}
×11 K 307				Mrk 509 ^{<i>a</i>,<i>c</i>}	311.04	-10.72	Sy1	0.034	0.17	8.1 ± 0.1	>43.2	45.2 ± 1.0	$ \begin{array}{r} 45.2^{e} \\ 44.3^{h} \\ 45.3^{i} \\ 44.3^{j} \\ 44.5^{j^{*}} \\ 44.7 \end{array} $
				SWIFT J2127.4+5654 MR 2251-178 ^{b,d} NGC 7582 ^{a,c}	$^{b,d}321.94$ 343.52 349.60	56.94 - 17.58 - 42.37	Sy1 Sy1 Sy2	$0.014 \\ 0.064 \\ 0.0052$	$0.23 \\ 0.14 \\ 0.26$	~ 7.2 8.7 ± 0.1 7.1 ± 1.0	$\begin{array}{c} 42.8 \pm 0.1 \\ 43.3 \pm 0.1 \\ 43.4 \pm 1.1 \end{array}$	$\begin{array}{c} 45.6 \pm 0.5 \\ 46.7 \pm 0.7 \\ 44.9 \pm 0.4 \end{array}$	$ \begin{array}{r} 44.5^{d} \\ 45.8^{f} \\ 43.3^{e} \end{array} $

- Using Fermipy v0.19.0
- Ran on Clemson University HPC (Palmetto)
- Stacking code based on the codes of Marco Ajello, Vaidehi Paliya and Abhishek Desai
- Successfully employed for EBL, extreme blazars, star-forming galaxies.

1. Preprocessing

- Optimize ROI for each source using a binned likelihood analysis.
- Model consists of: Galactic diffuse, isotropic, point sources, and target source modeled with a power law.

2. Stacking

- Construct likelihood (TS) profiles for each source by iterating through index and flux
- Only free parameters in likelihood fit are Galactic diffuse and isotropic
- Sum TS profiles for all sources to obtain global significance of signal

 $TS = -2(\log L_0 - \log L)$

 $\log(L) = \log(L_1 L_2) = \log L_1 + \log L_2$, where $L(\theta \,|\, X) = P(X \,|\, \theta)$

Results

- We show that the gamma-ray emission observed in the UFOs is a factor of ~40 larger than what we would expect for star-formation activity.
- We also show that it's highly unlikely the UFO emission results from weak jets.

Results

• Scaling of the gamma-ray luminosity as a function of bolometric luminosity

UFO Model

- We model the hadronic emission resulting from diffusive shock acceleration.
- On average, the forward shock has traveled 20-300 pc away from the SMBH.
- The max energy of protons accelerated at the shock is ~10^17 eV, making AGN winds a potential source of CRs beyond the knee of the CR spectrum (3e15 eV) and also likely contributors to the EGB and IceCube neutrino flux.

Summary

- The UFO population is detected with a TS = 30.1 (5.1 sigma for 2 dof)
- Best-fit index = 2.1 + 0.3
- Best-fit flux = $2.51^{+1.47}_{-0.93} \times 10^{-11}$ ph cm⁻² s
- The gamma-ray emission scales with the bolometric luminosity
- Best-fit efficiency = $3.2^{+1.6}_{-1.5} \times 10^{-4}$
- Under the assumption that the emission results from diffuse shock acceleration, akin to SNRs, the UFO signal implies that the shock front travels ~20-300 pc from the SMBH.
- UFOs may be plausible contributors to the EGB and IceCube neutrino flux.
- Paper available on arXiv: 2105.11469

Thank you!

Extra Slides

UFO SED (model details)

- We model the hadronic emission resulting from diffusive shock acceleration.
- The instantaneous proton spectrum is calculated with the Cosmic Ray Analytical Fast Tool (CRAFT).
- To model the cumulative proton spectrum we use the hydrodynamic model for the shock evolution calculated in Liu+18.
- The gas density model is tuned to the sample BH masses and velocity dispersions.
- The gamma-ray spectrum is calculated from the cumulative proton spectrum using the radiative processes code naima.
- We also estimate the UFO leptonic emission (sub-dominant).
- The magnetic field, for example (Liu+18), can be defined as

$$B = [12\pi\epsilon_B n_{sg}(R)kT_{sg}(R)]^{1/2}$$
, where $T_{sg} = 3m_p v_s(R)^2 / 16k$