
SESSION 15: FUTURE INSTRUMENTATION FOR DIRECT MEASUREMENTS AND MULTIMESSENGER ASTROPHYSICS

Stéphane Coutu Penn State University

John Krizmanic UMBC/CRESST/GSFC

ICRC 2021 Berlin 13 July 2021

OTHER RELEVANT SESSIONS

CRD rapporteur: Philipp Mertsch MM rapporteur: Irene Tamborra

- <u>13 (CRI) New Instrumentation and Tools for EAS Detection (overlap with CRD)</u> (21 Jul, 12:00)
- <u>14 (CRD) CRs and ISM</u> (15 Jul, 12:00)
- <u>16 (CRD) Cosmic Ray Antiparticles and Electrons</u> (15 Jul, 18:00)
- <u>17 (CRD) Nuclear CR Spectra: Theory and Observations</u> (14 Jul, 18:00)
- <u>18 (CRD) Cosmic Ray Secondary Nuclei: Observations and Impact on Theories</u> (19 Jul, 18:00)
- <u>25 (MM) Blazars, AGN</u> (12 Jul, 18:00)
- <u>26 (MM) Galactic Sources & Winds</u> (21 Jul, 12:00)
- <u>27 (MM) GW Follow-Up Observation</u> (20 July, 18:00)
- 28 (MM) Searches for Transients (16 July, 12:00)
- 33 (NU) Photodetection in Cherenkov Detectors (13 Jul, 18:00)
- 43 (GAD) New and Upcoming Instruments for Space-Based Gamma-Ray Astronomy (20 Jul, 18:00)
- 56 (GAI) New Instruments, Performance & Future Projects for Ground-Based Gamma-Ray Astronomy (20 Jul, 12:00)

THE FUTURE

For each topic:

- quick motivation by JFK/SC
- 1-2 slides and minutes per speaker
- interactive discussion

- Primary nuclei and electrons; 12:03 - 12:17 Shuang Nan Zhang / HERD Pier Simone Marrocchesi (with Paolo Maestro) / systematics Also invited but not confirmed: HEPD-02, GAMMA-400, NUCLEON-2

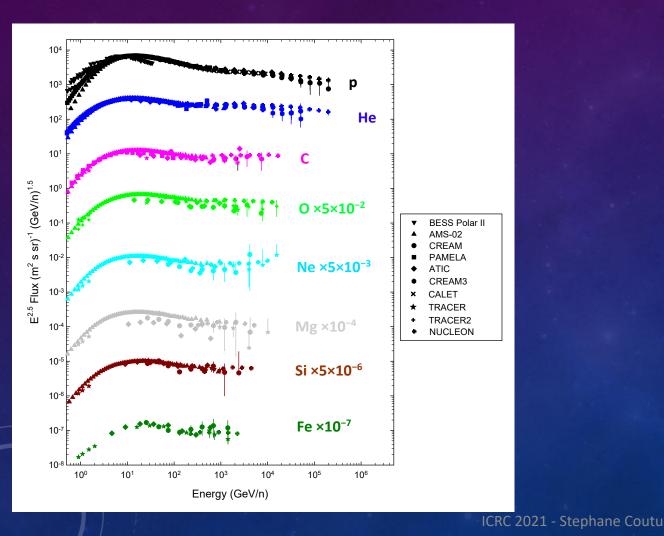
- Secondary nuclei (including isotopes); 12:17 - 12:27 Nahee Park / HELIX Laurent Derome / future secondary nuclei measurements

- Ultraheavy nuclei; 12:27 - 12:37 Brian Rauch / TIGERISS, APT

- Antimatter, dark matter searches; 12:37 - 12:55 Philip von Doetinchem / GAPS Stefan Schael / AMS-100 Roberto Battiston / ALADInO

- Ultrahigh energy regime (UHECRs and neutrinos); 12:55 - 13:17 Angela Olinto / POEMMA Abby Vieregg / PUEO Lawrence Wiencke / JEM-EUSO, EUSO-SPB2 Joerg Hoerandel / GCOS Stephanie Wissel/ Lunar detectors / ZAP

3

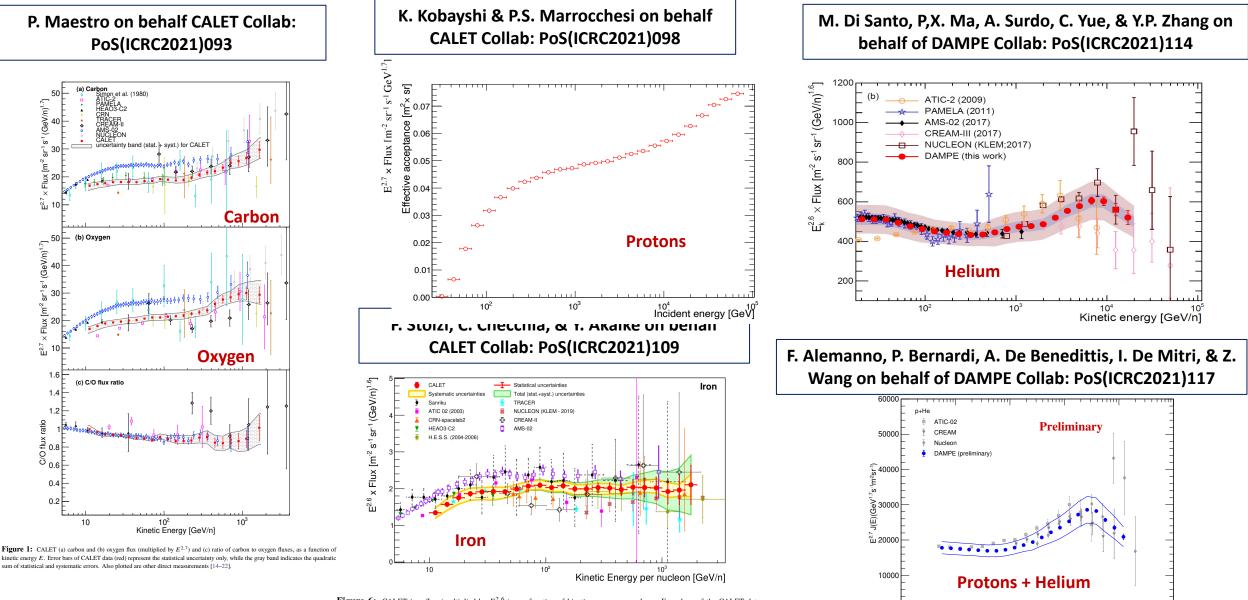

- Accelerator measurements 13:17 - 13:24 Michael Unger / NA61 / Shine

- CRI/CRD overlap 13:24 - 13:30 John Krizmanic with Toshihiro Fujii / Marco Casolino

ICRC 2021 - Stephane Coutu

Need to resolve differences between experiments, confirm spectral details (slopes, hardening, diffuse vs source terms), extend to the knee...

PRIMARY NUCLEI AND ELECTRONS



CRD: Cosmic Ray High-energy Nuclei Measurements

10⁵

10³ Energy (GeV)¹⁰

ICRC 2021 – John Krizmanic

Figure 6: CALET iron flux (multiplied by $E^{2.6}$) as a function of kinetic energy per nucleon. Error bars of the CALET data (red) represent the statistical uncertainty only, the yellow band indicates the quadrature sum of systematic errors, while the green band indicates the quadrature sum of statistical and systematic errors. Also plotted are other direct measurements [36–44].

The High Energy Cosmic-Radiation Detection (HERD) facility on board the Chinese Space Station

SHUANG-NAN ZHANG FOR THE HERD COLLABORATION

HERD Collaboration

CHINA

Institute of High Energy Physics, CAS (IHEP)

Xi'an Institute of Optical and Precision Mechanics, CAS (XIOPM) Guangxi University (GXU) Shandong University (SDU) Southwest Jiaotong University (SWJTU) Purple Mountain Observatory, CAS (PMO) University of Science and Technology of China (USTC) Yunnan Observatories (YNAO) North Night Vision Technology (NVT) University of Hong Kong (HKU) Academia Sinica

ITALY

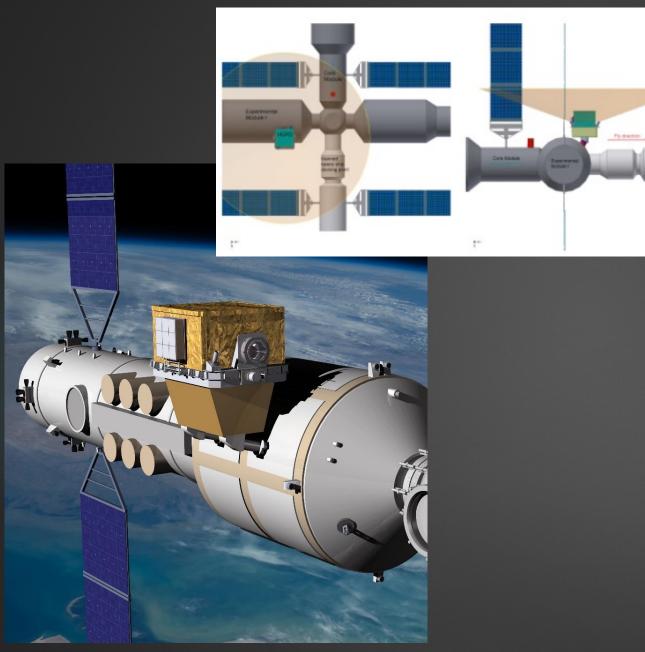
L'Aquila University INFN Bari and Bari University INFN Bologna INFN Firenze and Firenze University INFN Laboratori Nazionali del Gran Sasso and GSSI Gran Sasso Science Institute INFN Lecce and Salento University INFN Napoli and Napoli University INFN Pavia and Pavia University INFN Perugia and Perugia University INFN Pisa and Pisa University INFN Roma2 INFN Trieste

SPAIN

CIEMAT - Madrid ICCUB – Barcelona IFAE – Barcelona

SWITZERLAND

University of Geneva EPFL - Lausanne F.Gargano - ICRC 2021 - Plenary Session - 21/07/21



The **High Energy cosmic-Radiation Detection** (HERD) facility is an international space mission that will start operation around 2027.

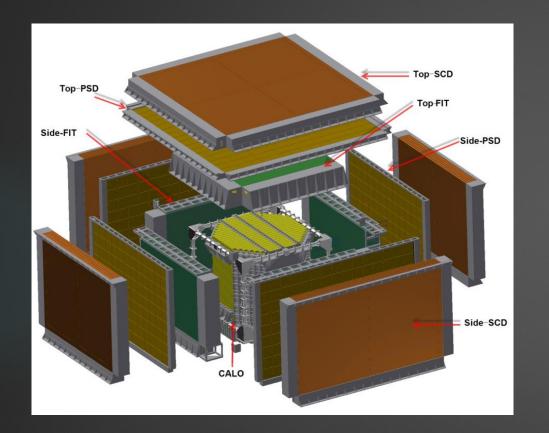
The experiment is based on a **3D**, **homogeneous**, **isotropic and finely-segmented calorimeter** that will measure the cosmic ray flux up to the knee region, search for indirect signal of dark matter and monitor the full gamma-ray sky

HERD on board CSS

F.Gargano - ICRC 2021 - Plenary Session - 21/07/21

CSS expected to be completed in 2022

Life time	> 10y	
Orbit	Circular LEO	
Altitude	340-450 km	
Inclination	42°	


HERD expected to be installed around 2027

Life time	> 10y	
FOV	+/- 70°	
Power	< 1.5 kW	
Mass	< 4 t	

ICRC 2021 – Shuang-Nan Zhang

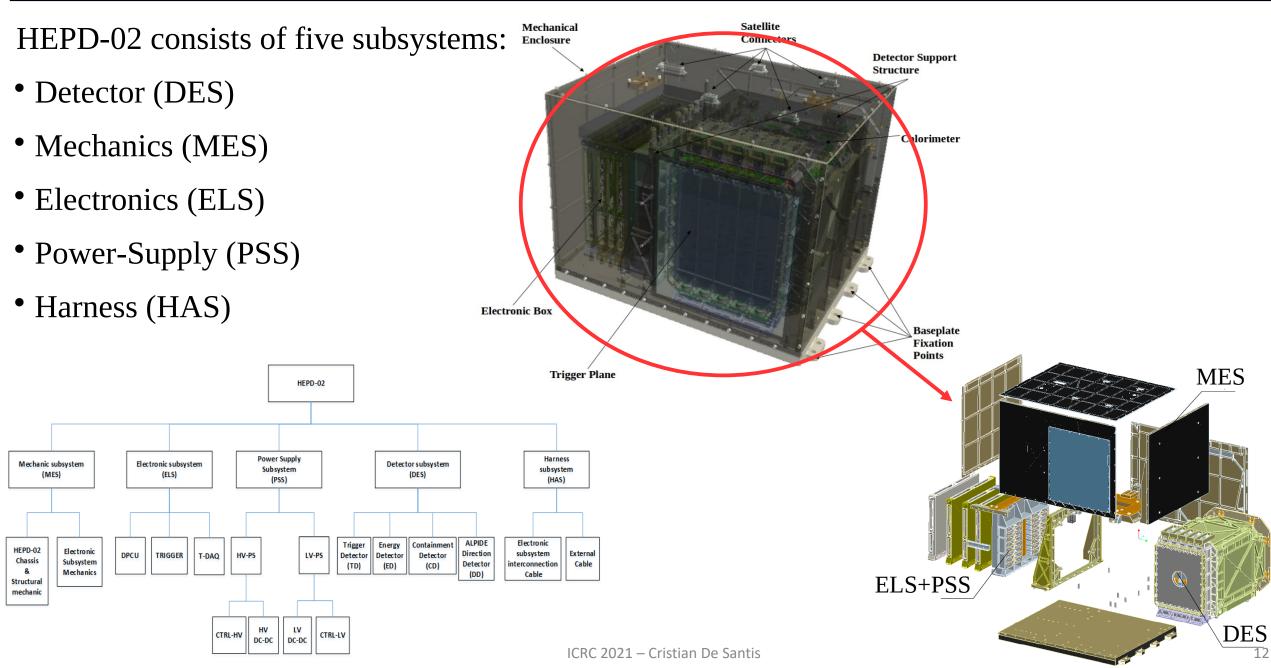
8

The detector

SCD	Charge Reconstruction
PSD	Charge Reconstruction y Identification
FIT	Trajectory Reconstruction Charge Identification
CALO	Energy Reconstruction e/p Discrimination
TRD	Calibration of CALO response for TeV protons

Main requirements					
	γ	е	p, nuclei		
Energy Range	>100MeV	10 GeV 100 TeV	30 GeV 3 PeV		
Energy resolution	1% @ 200 GeV	1% @ 200 GeV	20% @ 100 GeV -1 PeV		
Effective Geometric Factor	>0.2 m ² sr @ 200 GeV	>2 m²sr @ 200 GeV	>1 m ² sr @ 100 TeV		

F.Gargano - ICRC 2021 - Plenary Session - 21/07/21


ICRC 2021 – Shuang-Nan Zhang

HEPD-02 ON-BOARD CSES-02

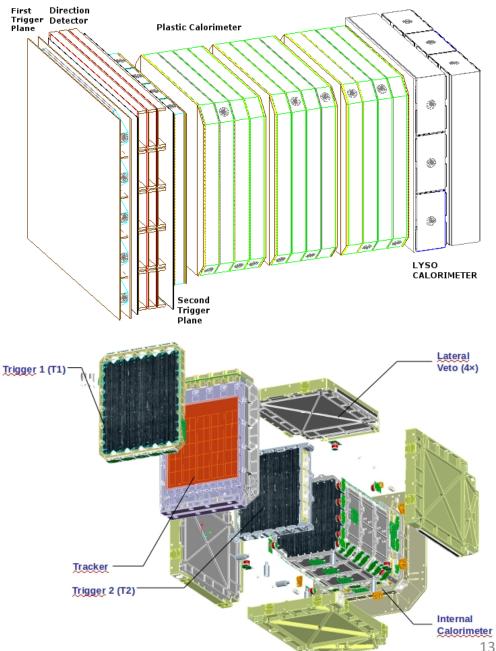
HEPD-02 MAIN REQUIREMENTS

Operating temperature	-10 °C ÷ +35 °C
Operating pressure	$\leq 6.65 \cdot 10^{-3} \text{ Pa}$
Data budget	$\leq 100 \text{ Gb/day}$
Mass budget	$\leq 50 \text{ kg}$
Power budget	$\leq 45 \mathrm{~W}$
Electron kinetic energy range	3 MeV ÷ 100 MeV
Proton kinetic energy range	30 MeV ÷ 200 MeV
Angular resolution	$\leq 10^{\circ}$ for e^- with E > 3 MeV
Energy resolution	$\leq 10\%$ for e^- with E > 5 MeV
Pointing	Zenith
Scientific data bus	RS-422
Data handling bus	CAN 2.0
Life cycle	– Cristian De Santis > 6 years

HEPD-02 SYSTEM ARCHITECTURE

HEPD-02 DETECTOR LAYOUT

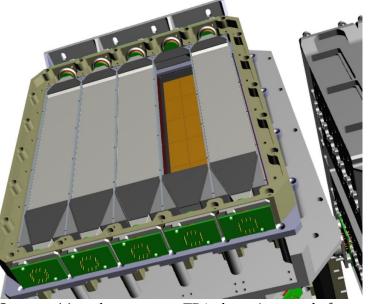
TRigger plane TR1 (overall dimensions 200x180 mm²) segmented in 5 plastic scintinllator bars (2 mm thick);

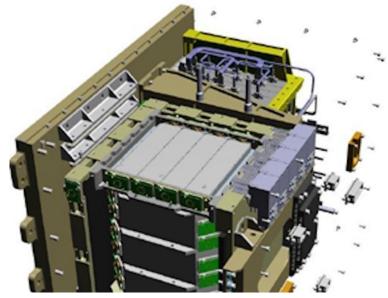

Direction Detector DD ("tracker") made of five standalone tracking modules ("turrets"), each composed of three sensitive planes ("staves");

TRigger plane TR2 (overall dimensions 150 x 150 mm²) Energy Detector ED ("calorimeter") composed of:

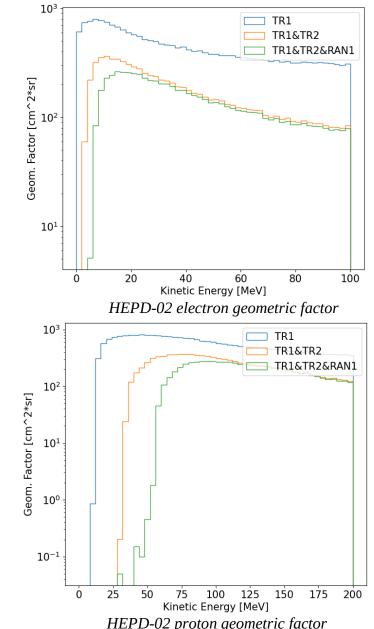
- 12 plastic scintillator planes (150 x 150 x 10 mm³);
- 2 crystal (LYSO) scintillator planes (overall dimensions 150 x 150 mm² segmented in 3 bars (50 mm thick);

Containment Detector CD surrounding the calorimeter on 5 sides, made of plastic scintillator planes (4 lateral and 1 bottom plane), 8 mm thick.


Plastic scintillators: Eljen EJ-200; PMTs: Hamamatsu R9880-

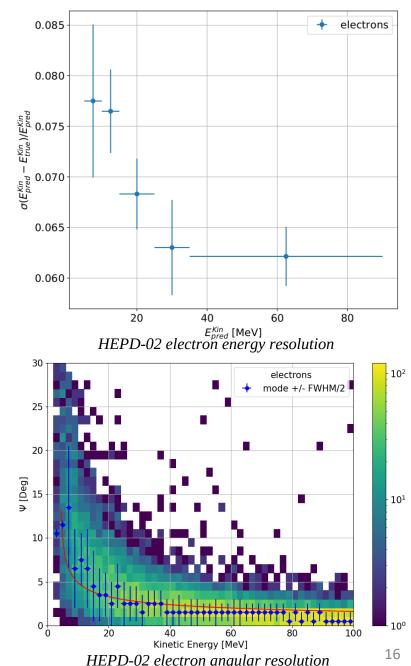

HEPD-02 DETECTOR DESIGN

- HEPD-02 designed to meet the scientific requirements (energy range, energy and angular resolution)
- Particular attention paid to the electron and proton angular and energy resolution in the explored energy range
- Given the demanding mechanical constraints, the detector has been carefully studied to obtain an optimal trade-off between active materials and support structures along the vertical axis



Superposition between a TR1 bar (removed from figure) and the underlying DD ALPIDE stave

Second trigger plane TR2 on top of the ED calorimeter¹⁴


- The scientific performance of HEPD-02 has been evaluated by means of a Geant4 simulation for an isotropic incoming flux of electrons and protons on top of the instrument
- The energy range requirement is met both for electron (3 MeV ÷ 100 MeV) and proton (30 MeV ÷ 200 MeV)
- The low energy threshold is limited by the mechanical constraints on the stiffness of the detector support layers, given by the structural requirements to sustain mechanical stresses at launch

15

HEPD-02 PERFORMANCE – ENERGY AND ANGULAR RESOLUTION

- Energy resolution: relative difference between true initial kinetic energy and reconstructed kinetic energy (selected sample)
- Electron energy uncertainty <10% for kinetic energies >5 MeV in compliance with the mission requirement
- Angular resolution: distribution of the angle between incoming electron direction reconstructed in the DD and true direction (selected sample)
- Angular resolution better than 10° for the larger part of the electron events with kinetic energies above 5 MeV in compliance with the mission requirement

CONCLUSIONS

- The High Energy Particle Detector (HEPD-02) is being developed to be launched on-board of the second China Seismo-Electromagnetic Satellite (CSES-02) by the end of 2022
- HEPD-02 will be capable of detecting individual incident particles and:
 - identifying type (proton, electron, nucleus)
 - measuring energy
 - determining pitch angle
- HEPD-02 main purpose: identifying particle burst from the stability bands of the Van Allen internal belt to find possible temporal correlations with terrestrial seismic events
- HEPD-02 architecture is the result of an optimized trade-off between scientific objectives of the mission and technical requirements for high-reliability operation in space environment
- Simulation demonstrate that HEPD-02 performance is expected to meet the mission requirements

CRD: Cosmic Ray High-energy all-electron Measurements

H. Motz on behalf CALET Collab: PoS(ICRC2021)100

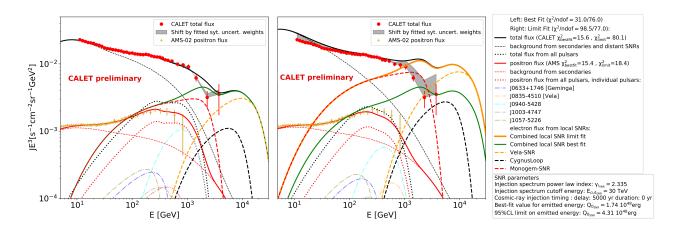
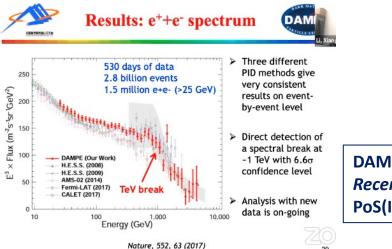
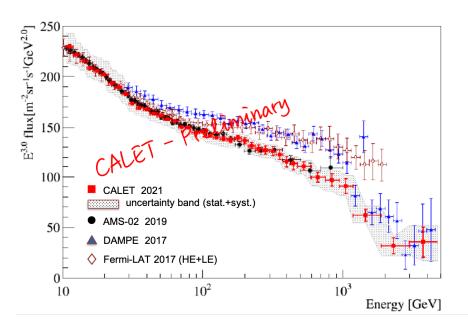




Figure 1: An example of a best fit (left) and limit fit (right) for the case of burst-like emission from the three nearby SNR after a 5 kyr delay, with a power-law injection spectrum with exponential cut-off at 30 TeV. See legend for explanation of each graph element.

S. Torii & Y. Akaike on behalf CALET Collab: PoS(ICRC2021)105

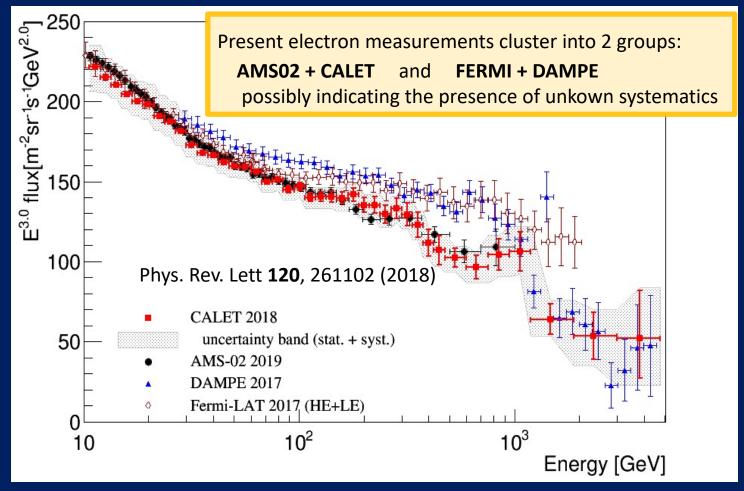


Figure 5: Cosmic-ray all-electron spectrum measured by CALET from 11 GeV to 4.8 TeV using the same energy binning as in our previous publication [7], where the gray band indicates the quadratic sum of statistical and systematic errors (not including the uncertainty on the energy scale). Also plotted are direct measurements in space [8, 17–19] for comparison.

DAMPE results reported during Plenary Session 16 July 21 Recent status and results of the Dark Matter Particle Explorer PoS(ICRC2021)013 X. Li

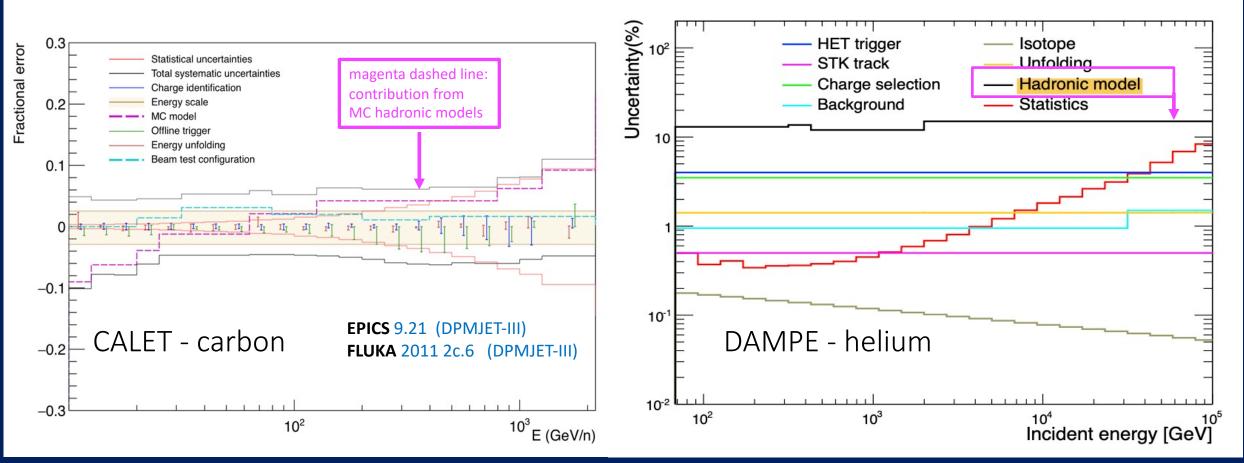
Systematic errors in CRD measurements: room for improvement (1/2)

- In the present era of precision CR direct measurements, still significant tensions exist among the data from different experiments. A well known example is shown below for electrons.
- The main **"Known Sources"** of systematic errors include uncertainties on:

hadronic models including:

DPMJET-III in : - EPICS 9.21

- FLUKA 2011 2c.6

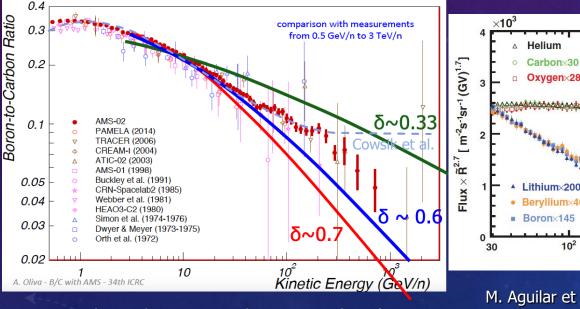

FTFP_BERT in: - GEANT4 10.5 • Energy Scale

MC models entangled to:

- unfolding
- background subtraction
- back-scattering
- Normalization
 - live time
 - long-term stability
 - energy scale
- Event selection
 - tracking
 - charge-ID
 - trigger
 - acceptance
 - more ...

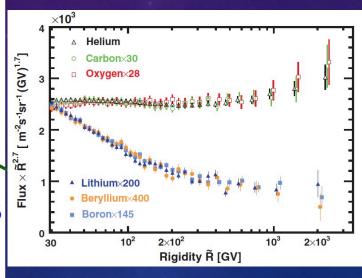
Systematic errors in CRD measurements: room for improvement (2/2)

Breakdown of systematic errors: two examples where the **uncertainty on MC hadronic models** can exceed 10%

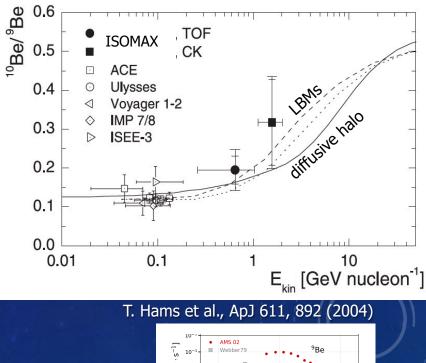

 Improvement in the understanding of "Known Sources" of systematics, should leave less room for the still "Unknown Sources" and mitigate the present discrepancies in flux normalization among AMS-02, CALET, DAMPE.

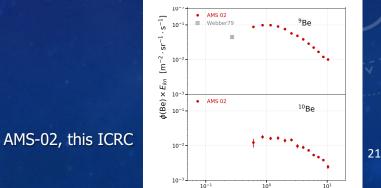
An inter-collaboration effort is needed to track down unknown systematics.

37th ICRC 2021 - CRD + MM 15

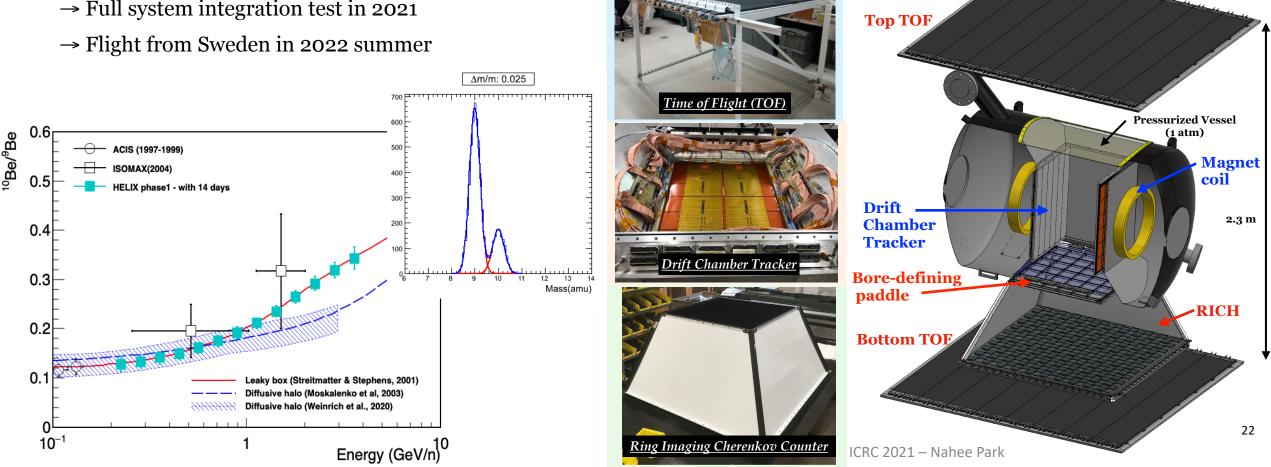

B/C shape well constrained by AMS; interesting sec vs pri comparison; Be and other isotopes need better measurements, phenomenological understanding of secondary production being refined (crucial for antimatter)

SECONDARY NUCLEI




H. S. Ahn et al., Astropart. Phys. 30, 133 (2008) A. Oliva et al., 34th ICRC (2015)

M. Aguilar et al., PRL 120, 021101 (2018)


[GeV/n]

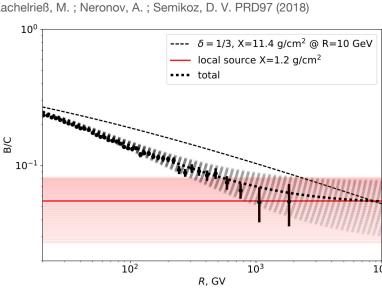
ICRC 2021 - Stephane Coutu

High Energy Light Isotope eXperiment

A spectrometer with 1 Tesla superconductive magnet w/ mass resolution better than 3% up to 3 GeV/n

- HELIX will provide key data to understand the propagation of cosmic rays by measurements of light isotopes ($1 \le Z \le 10$)
- ✓ Mass productions of the flight hardware have finished
- \checkmark Performance of sub-detector components meet the design goals
- ✓ Integration of sub-systems underway
- \rightarrow Full system integration test in 2021

Future expansion of B/C ratio to higher energies


- Current status: Precise estimation (percent level) of B/C ratio up to TeV region with AMS, CALET, DAMPE...
- * **Physical case**: B/C (or B/O) is key observable to understand propagation
 - * In the high energy regime, diffusion dominates and B/C $\propto K_0 R^{-\delta}$:
 - \rightarrow Large lever arm to measure the diffusion index δ and/or to investigate breaks.
 - \rightarrow Reaching the knee region B/C would be of the utmost interest.
 - As diffusion increase with energy/rigidity, galactic grammage decrease and secondary production at the source can become dominant:

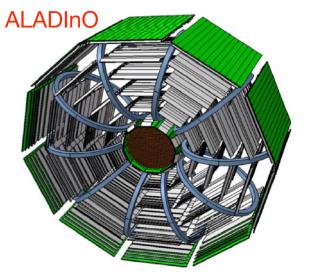
\rightarrow B/C at higher energy could alternatively probe the sources/acceleration processes.

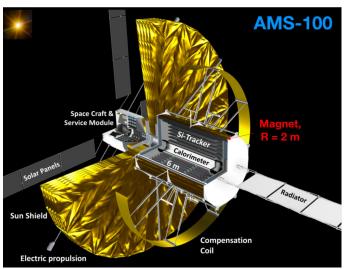
- Experimental challenges, need for:
 - Precise energy measurement up to the highest energy,
 - * Large acceptance (as B/C $\xrightarrow[R \to \infty]{}$ 0),
 - High identification power capabilities.
 - Low grammage, thin detector.

Mertsch, P.; Sarkar, S. PRD90 (2014)

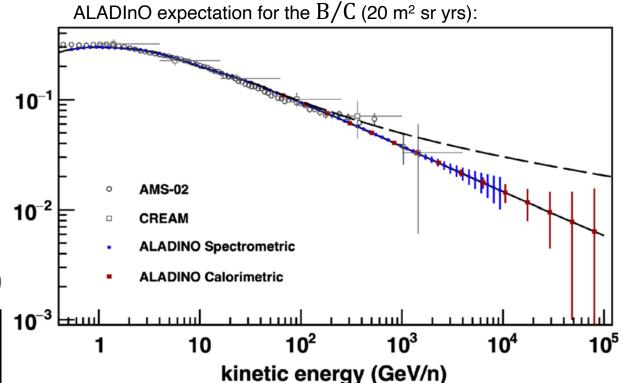
Kachelrieß, M.; Neronov, A.; Semikoz, D. V. PRD97 (2018)

ICRC21 discussion session #15 Laurent Derome, UGA, LPSC/IN2P3/CNRS




ICRC 2021

ic Ray Conference


Future expansion of B/C ratio to higher energies

- * Future projects?: 2 large acceptance magnetic spectrometer and calorimeter space experiments.
 - * ALADInO:
 - * Spectrometer: Acc. 10 m²sr, MDR 30 TV
 - * Calorimeter: Acc. 9 m²sr
 - * AMS-100:
 - * Spectrometer: Acc. 100 m²sr, MDR 100 TV
 - * Calorimeter: Acc. 30 m²sr (>10 up to the Knee)

3/C ratio

CRD: Ultra-heavy Galactic Cosmic Rays, measurements for Z > 40 critical

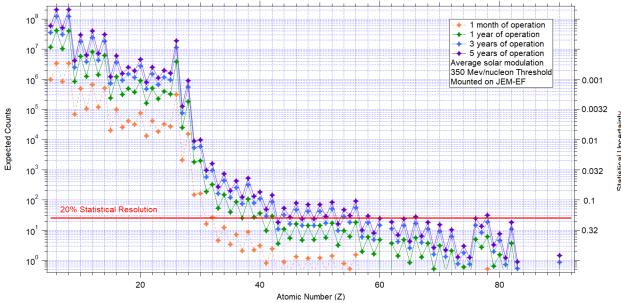
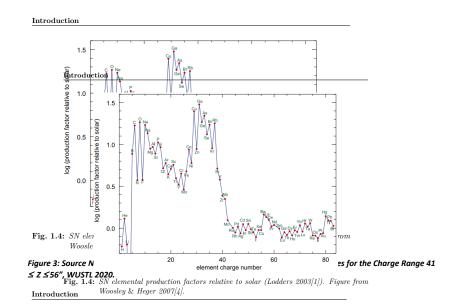
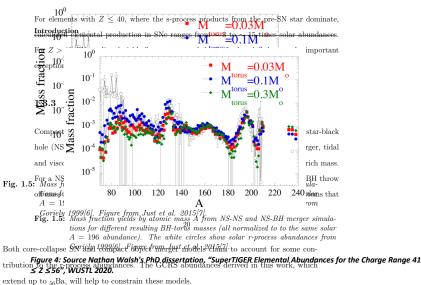
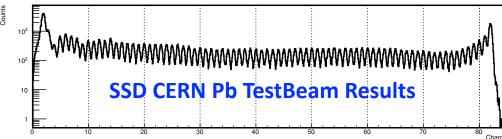
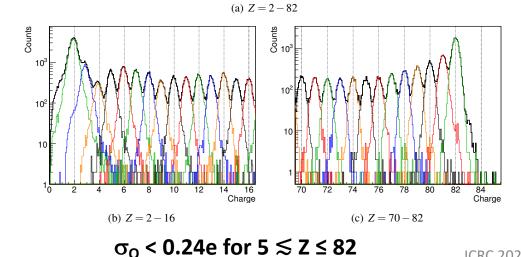




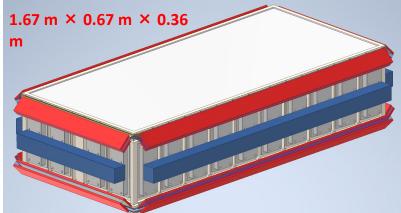
Figure 1: TIGERISS cosmic ray elemental count rates versus exposure time. The 20% resolution in not a 1 year exposure requirement but meant as a guide to the statistical resolution of TIGERISS measurements as a function of exposure time based on the current understanding of the UHGCR composition based on HEAO-3, Ariel 6, TIGER, and SuperTIGER data.

With the observation of the hypernova GW170817, the picture of UHGCR nucleosynthesis has become more interesting. It has been known that nucleosynthesis in supernovae have difficulty in producing elements with Z > 40 (see Fig 3.). However, binary-neutron-star (BNS) nucleosynthesis models appear to 'turn on' around Z > 40 (see Fig 4). *Thus sufficiently accurate measurements of the UHGCR abundances for Z > 40, initially for a set of key elements to distinguish whether these are created by s- or r-process nucleosynthesis, provide a fundamental understanding of how the elements are created in our galaxy.*



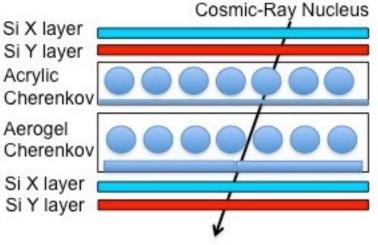


The Trans-Iron Galactic Element Recorder for the International Space Station (TIGERISS)



Silicon strip detector (SSD) for precision charge measurement $5 \lesssim Z \leq 82$ and SiPM Cherenkov detector readout based on CERN testing.

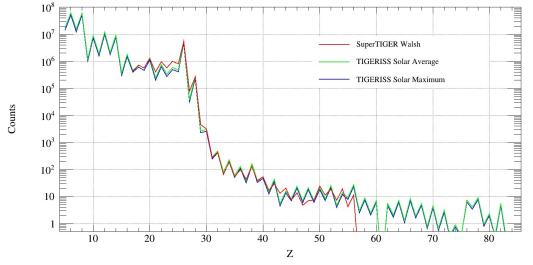
 Large electronic particle detector system – 1.1 m² active area, AΩ > 1.6 m² sr (JEM-EF version)



Charge measurement:

- dE/dx vs. Cherenkov
- Cherenkov vs. Cherenkov Acrylic techniques: Cheren

TIGERISS - Heritage

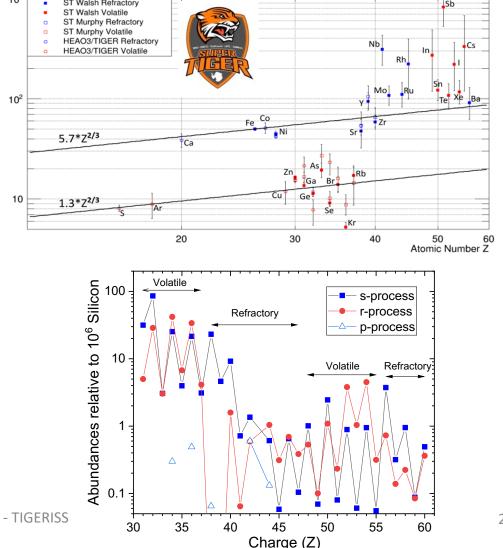


ICRC 2021 - 1338 - Brian Rauch - TIGERISS

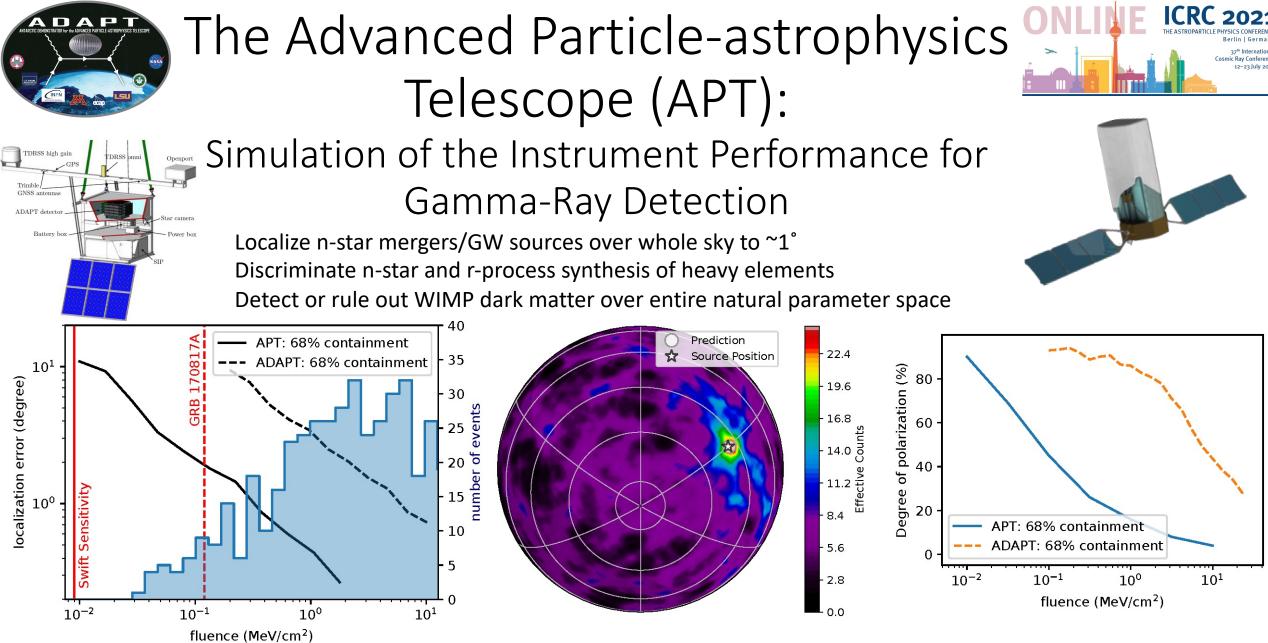
TIGERISS Measurements and Science

1341. Determination of Expected TIGERISS Observations

In one-year TIGERISS will have:

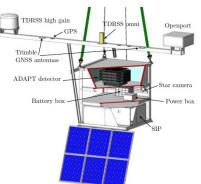

- Comparable statistics to SuperTIGER-1
- ~1/2 statistics for HEAO-3-HNE charge group measurements (Binns et al. 1989) with individual element resolution
- Probe relative amount of nucleosynthesis by s- and rprocesses in GCR with significant measurements of
 - s-process elements 50 Sn, 56 Ba
 - r-process elements 52 Te, 54 Xe

20% MSM(WH2007)]

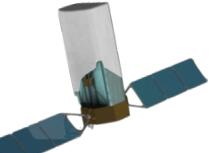

+

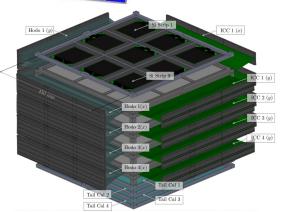
GCRS/[80% SS(L2003)

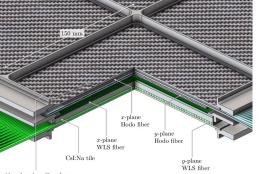
988. SuperTIGER Abundances of Galactic Cosmic Rays for the Atomic Number (Z) Interval 30 to 56


smic Ray Conference

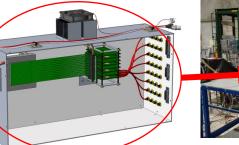
Left: Error in reconstructed direction of a Band-spectrum GRB versus fluence. Middle: An example Compton sky map of a 1 MeV/cm–2 GRB detected by the ADAPT. Right: 3-σ DOP sensitivity of the APT and ADAPT as a function of the GRB fluence.

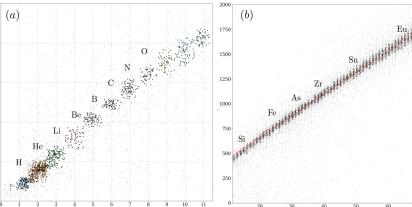



The Advanced Particle-astrophysics Telescope (APT):

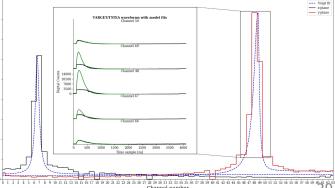


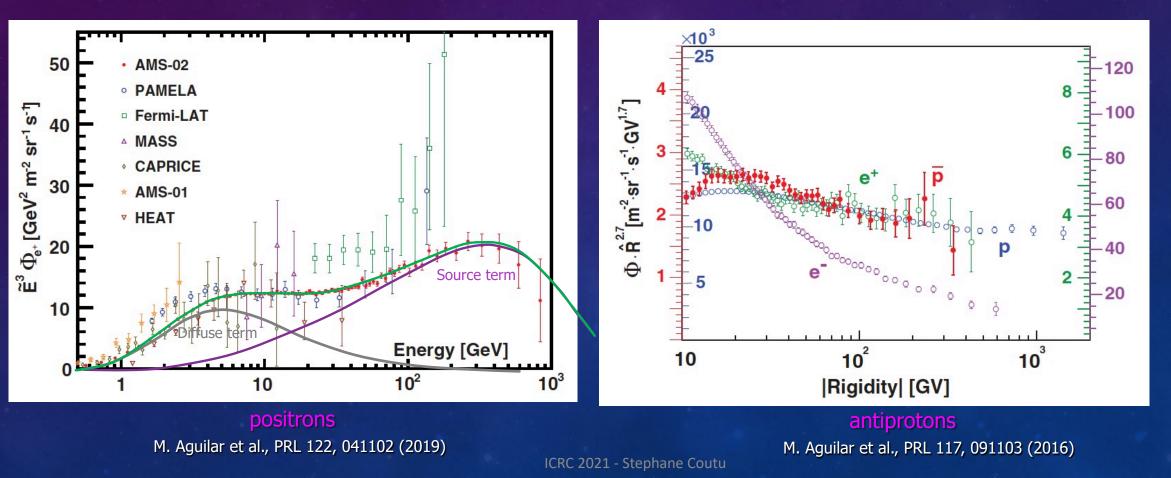
Characterization of a prototype imaging calorimeter for the Advanced Particle-astrophysics Telescope from Antarctic balloon flight and CERN beam test data.


APT/ADAPT have silicon strip detectors: APT measure cosmic-rays to ₈₂Pb+

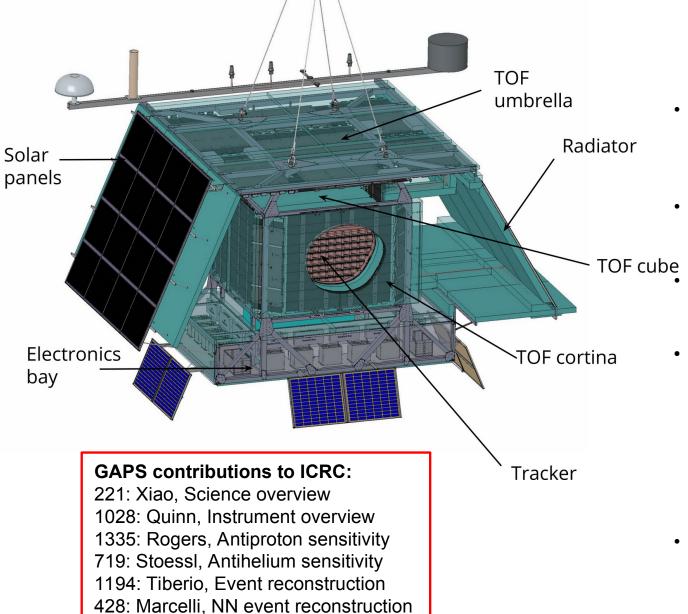


APT vs. HNX charge plot from CERN beam test.





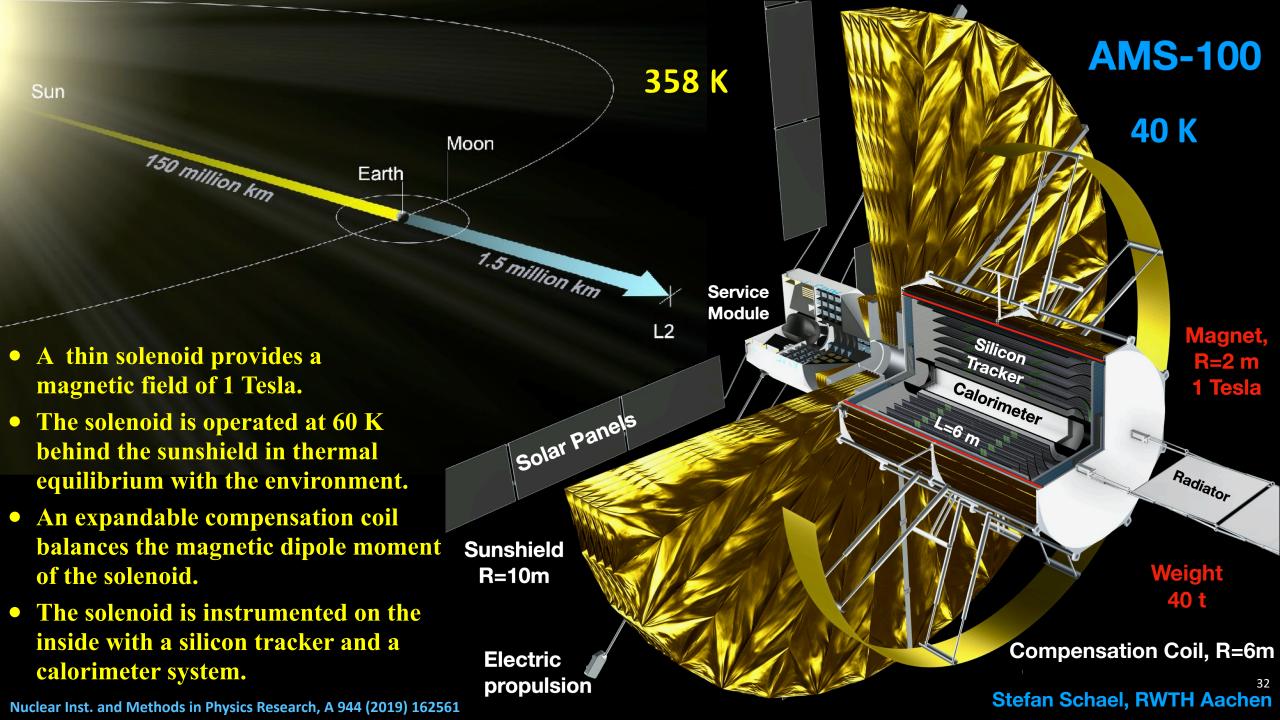
Cosmic-ray event reconstruction for 2019 APT-Lite balloon flight.

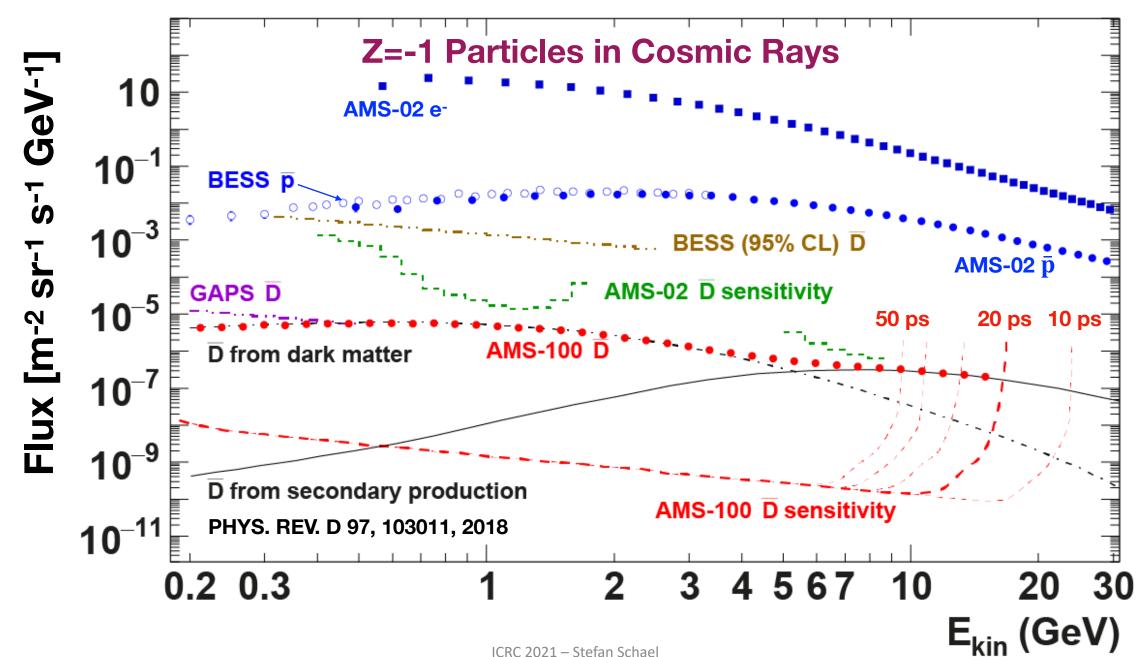

ANTIMATTER

- How well are the secondary e⁺, pbar understood? Can DM annihilations explain the excess positrons? Any meaningful pbar structure?
- New regime: antideuterons

30

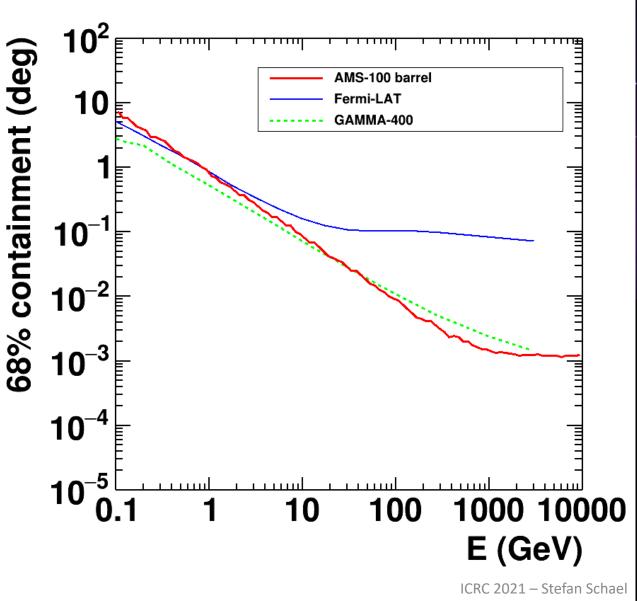
GAPS - General AntiParticle Spectrometer




- Low-energy cosmic-ray antideuterons are sensitive to a range of different dark matter models (review: JCAP08(2020)035, arXiv:2002.04163)
- The General AntiParticle Spectrometer is the first experiment dedicated and optimized for low-energy cosmic-ray antinuclei search
- Particle identification technique uses the formation and decay of an exotic atoms, followed by antinucleus-nucleus annihilation

• GAPS will deliver:

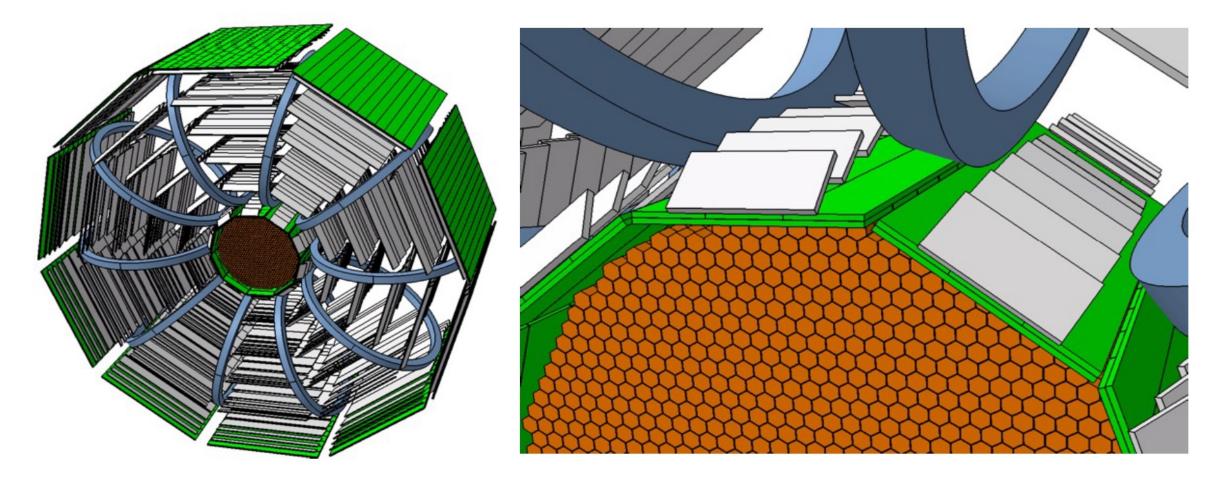
- a precision antiproton measurement in an unexplored energy range <0.25 GeV/n
- antideuteron sensitivity 1-2 orders of magnitude below the current best limits, probing a variety of DM models across a wide mass range
- provide leading sensitivity to low-energy cosmic antihelium nuclei
- GAPS is under construction
 - \rightarrow first Long Duration Balloon flight from Antarctica in late 2022

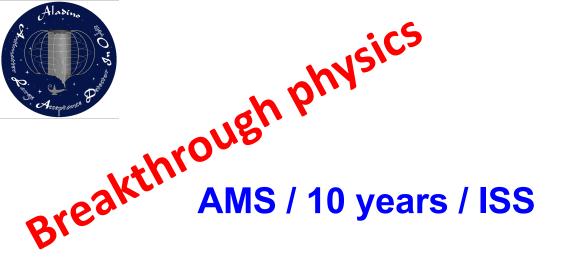


AMS-100: Acceptance 100 m² sr, Maximum Detectable Rigidity 100 TV

ICRC 2021 – Stefan Schael

AMS-100: Angular Resolution for Converted Photons


Crab Nebula with Chandra (blue and white), Hubble (purple), and Spitzer (pink) data.


FERMI, CTA

AMS-100

CRAB Nebula TeV - Photons

An Antimatter Large Acceptance Detector In Orbit ALADInO

170 Billions of events collected

about 1 anti-He event/year

Statistical sample too small to allow for accurate MC simulation (1/10¹⁰) particles ALADInO will observe 100 times more event/year than AMS

Allowing for

1- <u>unambiguous</u> determination of the antimatter signal

2- measurement of mass and energy spectrum

ALADiNO Performances (10x - 100x current/future)

$\sim 9 \text{ m}^2 \text{ sr}$
>10 m ² sr (~ 3 m ² sr w/i CALO)
> 20 TV
61 X ₀ , 3.5 λ _I
25% ÷ 35% (for nuclei)
2% (for electrons and positrons)
$> 10^{5}$
~100 ps
$\sim 9 \text{ m}^2 \text{ sr}$
$\sim 0.5 \text{ m}^2 \text{ sr}$
< 0.5 deg

Table 1: Key performance parameters of the ALADINO apparatus

ALADINO pathfinder strategy:

• PATHFINDER:

Aladin

- Reduced magnetic field (10 times less) same collecting area
- Physics goal : nuclear antimatter up to 100 GV, first class science
- Physics goal : precision GeV energy CR physics
- 2 Tons weight

• FULL VERSION:

- Full magnetic field
- 6.5 Tons weight
- Lagrangian 2 point
- Physics goal :
 - nuclear antimatter up to 1000 GV
 - Dark matter at the multi TeV/c²
 - Composition of CR in the multi 10 TV, approaching the knee

ALADiNO technology path:

- Tracker: *silicon strip detectors*, already space qualified (AMS, Pamela, Fermi, Agile, Dampe...)
- Tracker: *pixel strip detectors*, advanced development for LHC upgrade ongoing (CERN-Atlas, Alice), space qualification ongoing (ASI CSES2)
- Calorimeter: cube crystals R&D completed for HERD, space qualification ongoing (INFN)
- Superconducting Magnet: YBCO magnets under advanced development at CERN for LHC upgrade and future accelerators. Long standing collaboration between ASI, INFN and CERN. Space qualification needed.
- Low power cryogenics: *very efficient Pulsed Heat Pipes* developed through the H2020 SR2S program (CEA Saclay). *Space qualification needed*
- Electronics: extensive experience and space qualification of CERN experiments (micro) electronics up to O(10⁶) channels : AMS, Pamela, Fermi, Agile, Dampe...
- Thermal shield: passive thermal shield to be derived from e.g. Planck, Gaia

Core Team members

O.Adriani^{1,2}, G.Ambrosi³, B. Baoudoy⁴, R.Battiston^{5,6}, B.Bertucci^{7,3}, P.Blasi⁸, M.Boezio⁹, D.Campana¹⁰, L. Derome¹¹, I. De Mitri⁸, V. Di Felice¹², F. Donato¹³, M.Duranti³, V.Formato¹², D. Grasso¹⁴, I. Gebauer¹⁵, R. Iuppa^{5,6}, N. Masi¹⁷, D. Maurin¹¹, N.Mazziotta¹⁷, R. Musenich¹⁸, F. Nozzoli⁶, P.Papini², P. Picozza^{19,12}, M.Pierce²⁰, S.Pospíšil²¹, L. Rossi²², N.Tomassetti^{6,3}, V. Vagelli²³, X.Wu²⁴

1) University of Florence, Italy (IT)	AMS-01
 2) INFN-Florence, Italy (IT) 3) INFN Derugia Italy (IT) 	
 3) INFN-Perugia, Italy (IT) 4) CEA Saclay Irfu/SACM, France (FR) 	AMS-02
5) University of Trento, Italy (IT)	/
6) INFN-TIFPA, Trento, Italy (IT)	D
7) University of Perugia, Italy (IT)	Pamela
8) Gran Sasso Science Institute, Italy & INFN-Laboratori Nazionali del Gran Sasso, Italy (IT)	
9) INFN-Trieste, Italy (IT)	FERMI
10) INFN-Napoli, Italy (IT)	
11) Universitè Grenoble Alpes and IN2P3 LSPC, France (FR)	
12) INFN-Roma Tor Vergata, Italy (IT)	Dampe
13) University & INFN Torino, Italy (IT)	
14) INFN Pisa, Italy (IT)	
15) KIT, Karlsruher Institut für Technologie, Germany (DE)	Arina
16) University and INFN Bologna, Italy (IT)	
17) INFN-Bari, Italy (IT)	
18) INFN-Genova, Italy (IT)	Agile
19) University of Roma Tor Vergata, Italy (IT)	•
20) KTH Royal Institute of Technology, Sweden (SE)	
21) CTU, Czech Technical University, Czechia (CZ)	CSES-01
22) CERN, Switzerland (CH)	
23) ASI, Italian Space Agency, Italy (IT)	
24) University of Geneva, Switzerland (CH) ICRC 2021 – Roberto Battiston	•••••

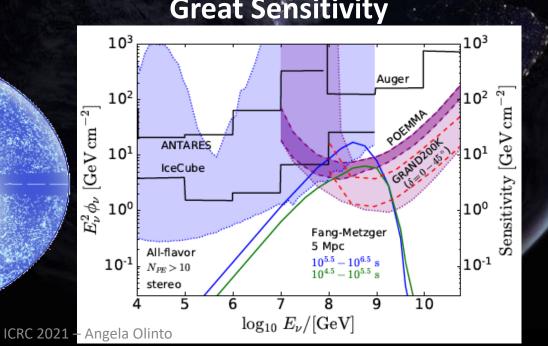
40

MM: Future UHECRs and VHE and UHE Neutrino Measurements

ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE

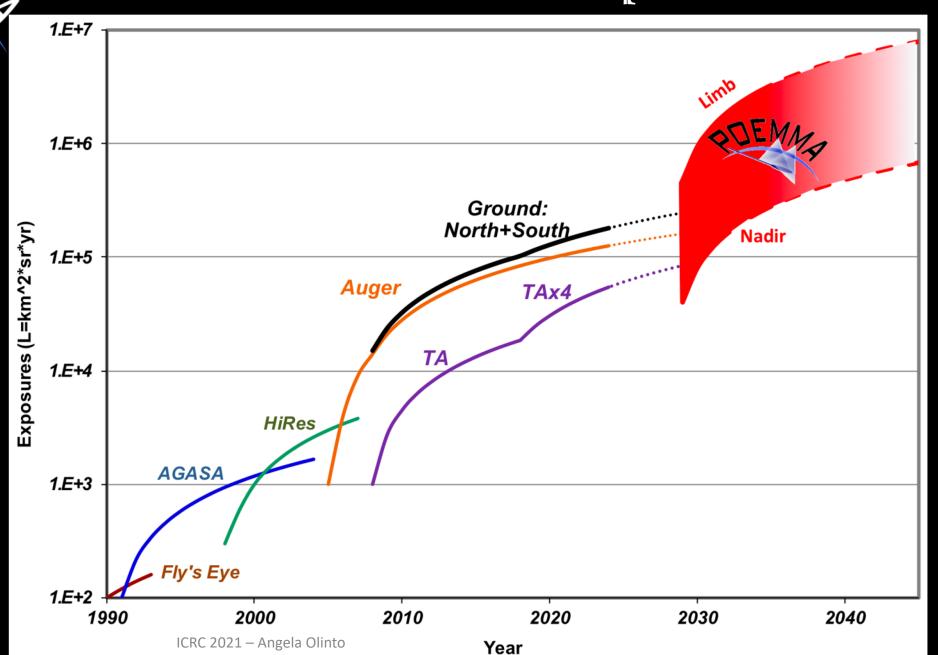
osmic Ray Confe

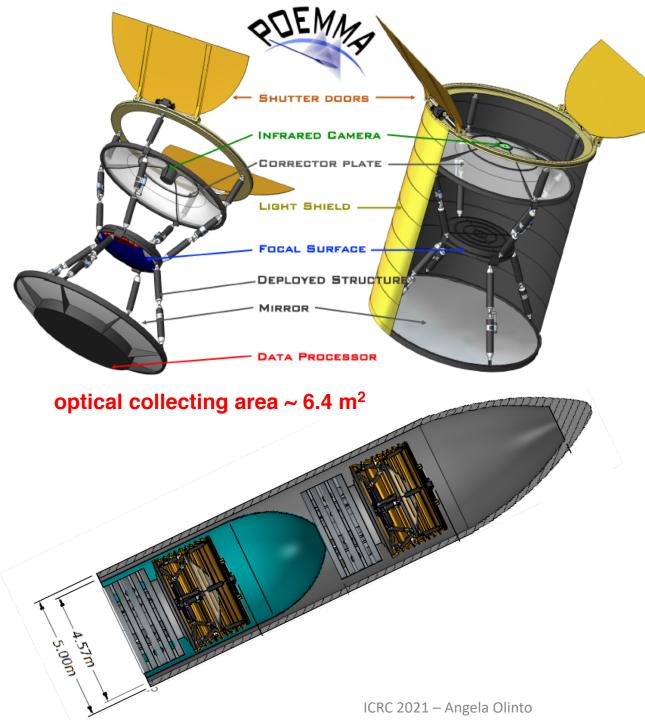
Probe Of Extreme Multi-Messenger Astrophysics UHECRs; UHE and VHE Neutrinos


Olinto et al <u>https://pos.sissa.it/395/976</u> Venters et al <u>https://pos.sissa.it/395/977</u>

/406; /419; /437; /519; /551; /977; /1201 UHECRs + UHENs Fluorescence (>20 EeV)

Tau Neutrinos → Tau-lepton decay Upgoing EAS Cherenkov (>20 PeV)


TARGET OF OPPORTU	NITY for Ne	utrinos >20PeV


Full Sky Coverage

Source Class	v Horizon Distance	Mission Time for 10% Prob.
TDE $M_{\text{SMBH}} =$ $5 \times 10^6 M_{\odot}$ Lumi Scaling	128 Mpc	1.5 yrs.
TDE Base Scenario	69 Mpc	8 yrs.
BH-BH merger Low Fluence	43 Mpc	3 yrs.
BH-BH merger High Fluence	137 Mpc	1 yr.
NS-NS merger	16 Mpc	1.5 yrs.
sGRB Moderate Extended Emission	90 Mpc	14.5 yrs. 42

POEMMA UIHECR Exposure

Launch: >2029 (Astro 2020) **Mission Lifetime: 3** years (5 year goal) **Orbits**: 525 km, 28.5° Inc **Orbit Period:** 95 min Satellite Separation: ~25 km – 1000+ km Satellite Position: 1 m (knowledge) Pointing Resolution/ Knowledge: : 0.1° /0.01° Slew Rate: 8 min for 90° Satellite Wet Mass: 3860 kg Power: 2030 W; Data: 1 GB/day; Data Storage:7 days Clock synch (timing): 10 nsec

TABLE I: POEMMA Specifications:

Photomete	er Components		Spacecraft	
Optics	Schmidt	45° full FoV	Slew rate	90° in 8 min
-	Primary Mirror	4 m diam.	Pointing Res.	0.1°
	Corrector Lens	3.3 m diam.	Pointing Know.	0.01°
	Focal Surface	1.6 m diam.	Clock synch.	10 nsec
	Pixel Size	$3 \times 3 \text{ mm}^2$	Data Storage	7 days
	Pixel FoV	0.084°	Communication	S-band
PFC	MAPMT $(1\mu s)$	126,720 pixels	Wet Mass	3,450 kg
PCC	SiPM (20 ns)	15,360 pixels	Total Power	880 W
Photomete	er (One)		Mission	(2 Observatories)
	Mass	1,550 kg	Lifetime	3 year (5 year goal)
	Power	590 W	Orbit	525 km, 28.5° Inc
	Data	< 1 GB/day	Orbit Period	95 min
			Observatory Sep.	. ~25 - 1000+ km

Each Observatory = Photometer + Spacecraft; POEMMA Mission = 2 Observatories 44

3 PDMs

POEMMA

Hybrid Focal Surface

UV Fluorescence MAPMTs with BG3 filter: 1 usec sampling

Cherenkov Detection SiPMs: 20 nsec sampling


EUSO-SPB2

Cherenkov

Camera

PUEO: The Payload for Ultrahigh Energy Observations

Abby Vieregg, U. Chicago

- One of four NASA Astrophysics Pioneers Missions (the only balloon payload); Launch Planned December 2024.
- System Requirements Review in the fall
- A unique detector for the highest energy (> 10¹⁸ eV) cosmic particles (neutrinos, cosmic rays, ++ ?)
- Especially large instantaneous effective volume, for transient, point source, and multi-messenger searches
- Builds on heritage from ANITA, with ~order of magnitude sensitivity improvement enabled by a phased array trigger, real-time digital filtering, and antenna optimization

EUSO-SPB2: ULDB flight from Wanaka, New Zealand in spring 2023

JEM-EUSO Program http://jem-euso.roma2.infn.it/				
Where	Completed	Current	In Preparation	Future
Space	TUS (satellite)	Mini-EUSO (ISS)		K-EUSO EUSO-EVA
Suborbital (balloon)	EUSO-Balloon EUSO-SPB1		EUSO-SPB2	
Ground		TA-EUSO		

EUSO-EVA

Observe UHECRs from Space Threshold 300 EeV 4x Pupil of Mini-EUSO

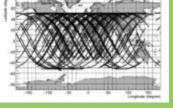
K-EUSO

Target: UHECRs Threshold ~30 EeV ICRC21: 754

EUSO Publications (link)

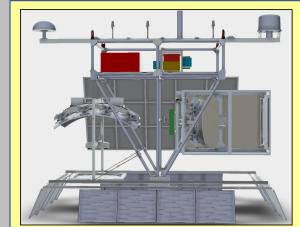
ICRC 2021 JProgram Overview 389

MiniEUSO


411, 414, 614, 757, 886, 971 1001, 1181, 1165

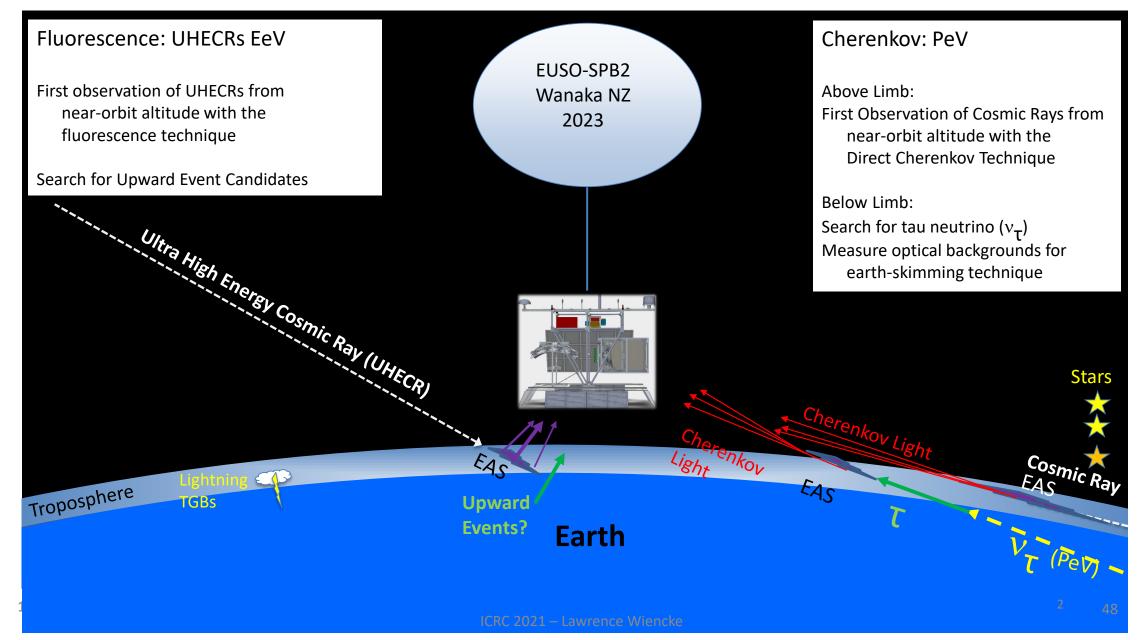
EUSO-SPB2

235, 403, 330, 403, 489, 490, 614, 867, 1091 also 1001


K-EUSO 754

R&D, UV Backgrounds, Flashers, TLEs

NASA SPB (Balloon) : Wanaka 2023


EUSO-SPB2

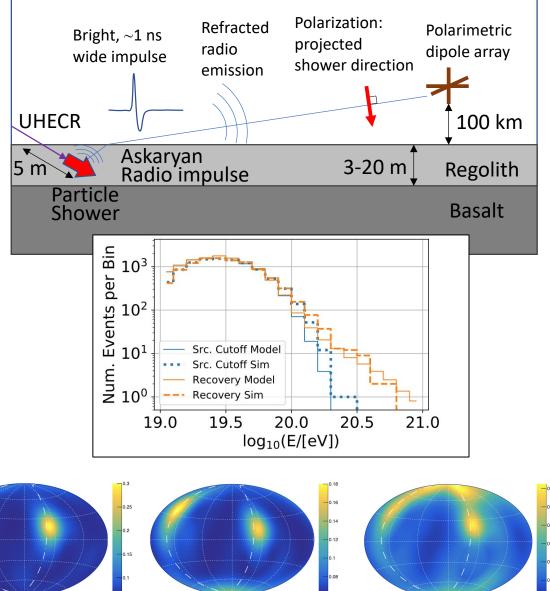
Goal: 3 Firsts from Near Space UHECR via fluorescence 0.12/hr HECR via direct Cherenkov ~1/min Neutrino Backgrounds near limb Also

Tau Neutrino sensitivity for transient sources: Galactic and Near Galaxies.

EUSO-SPB2: ULDB flight from Wanaka, New Zealand in spring 2023

GCOS - The Global Cosmic Ray Observatory

- World-wide initiative to conduct multi-messenger astroparticle physics beyond 2030
- MM-APP has started: GW sources, IceCube neutrinos, and follow-ups, key results from Telescope Array & Pierre Auger Observatory (anisotropies, mass composition)
- building on this knowledge, it is time to prepare for a Global Cosmic Ray Observatory after 2030
- aim for multi-purpose observatory: sources of UHE particles (charged CRs, neutrinos, gamma rays), dark matter searches, fundamental physics, particle physics, geophysics and atmospheric science
- considering different detection concepts, including layered/nested water Cherenkov detectors, radio antennas, and fluorescence light telescopes
- workshop with >200 participants in May 2021
 to discuss path to define physics case and develop concepts for detection technologies
- we plan a follow-up workshop at the end of 2021/begin of 2022 with the goal to write a roadmap for multi-messenger astroparticle physics (CRs, GAs, NUs, GWs) beyond 2030 and a Global Cosmic Ray Observatory

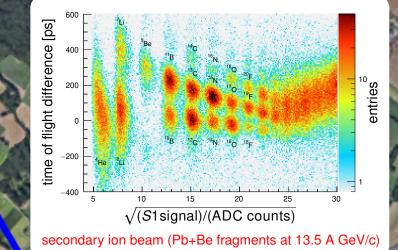

Zettavolt Askaryan Polarimeter

Concept:

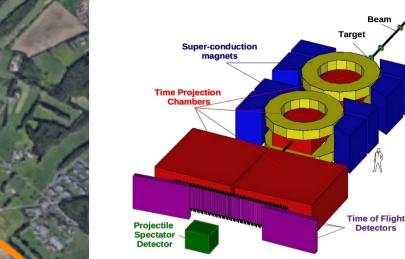
- Detection of UHECR radio pulses produced by interactions in the lunar regolith (PI: A. Romero-Wolf, JPL)
- Smallsat with VHF (30-300 MHz) polarimetric antenna array that takes advantage of broad Askaryan pulse at low frequencies

Science Targets:

- Independent identification the sources of the highest energy cosmic rays and test the mechanism by which the spectrum cuts off
 - Full sky coverage with \gtrsim 2,000 cosmic ray events with E $\gtrsim 10^{19.6}~{\rm eV}$
- Super-heavy dark matter searches via LPM pulse trains from $> 10^{21}$ eV v_e correlated with galactic center
- Planetary science: subsurface ice reflectors


Starburst Galaxies

Swift-BAT AGNs


ICRC 2021 – Stephanie Wissel

2MRS

Accelerator Measurements with NA61/SHINE at the CERN SPS M. Unger (KIT) for NA61/SHINE

 p_{beam} up to $Z \times 450$ GeV/c, p, \bar{p} , O, S, Ar, Pb...

• large acceptance pprox 50% at $p_T \leq 2.5 \, {
m GeV/c}$

- momentum resolution: $\sigma(p)/p^2 \approx 10^{-4} ({\rm GeV/c})^{-1}$
- tracking efficiency: > 95%, pid with dE/dx and ToF

ICRC 2021 – Michael Unger

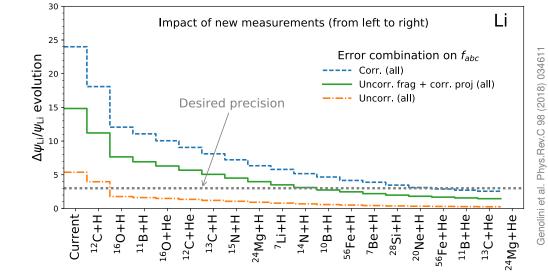
The Cosmic-Ray Program of the NA61/SHINE

Topics

- Particle Production in Air Showers
 - p+C Interactions
 (31, 60, 90 120 GeV/c)
 - π+C Interactions
 (30, 60, 158, 350 GeV/c)
- Galactic Cosmic Rays
 - d, \bar{d} and \bar{p} Production
 - p+p at 20, 31, 40, 80, 158, 400 GeV/c
 - \rightarrow M. Naskret, contribution 1134/535
 - \rightarrow A. Shukla, contribution 1343/178
 - Nuclear Fragmentation

light nuclei on p at 13.5 GeV/c/nucleon

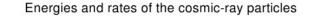
 \rightarrow N. Amin, contribution 609/201

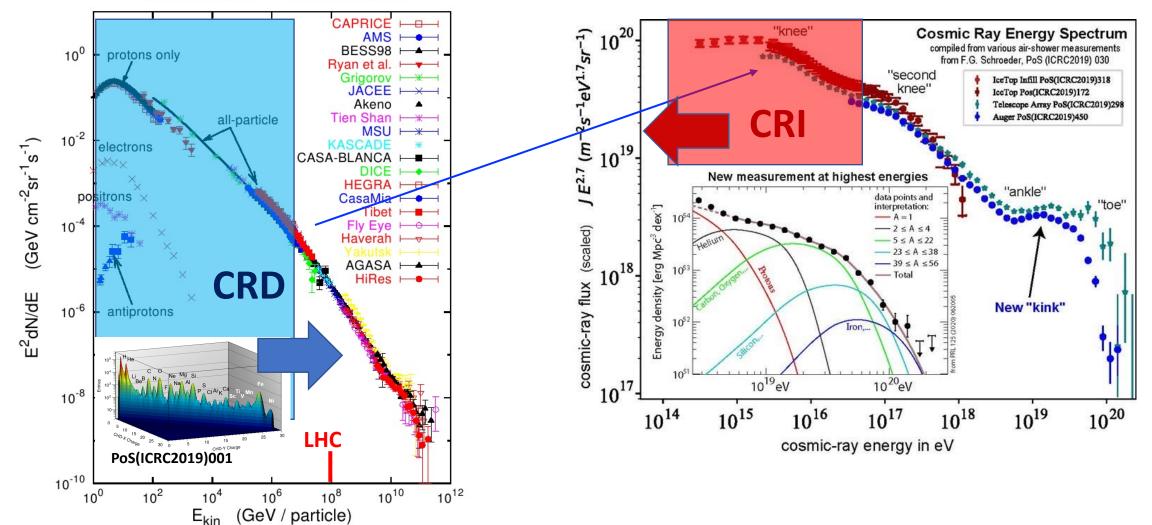

Timeline

- 2018: pilot run on nuclear fragmentation C+C, C+CH₂ at 13.5 GeV/c/nucleon
- ongoing: NA61 detector upgrade

increase readout rate from 80 to 1000 Hz

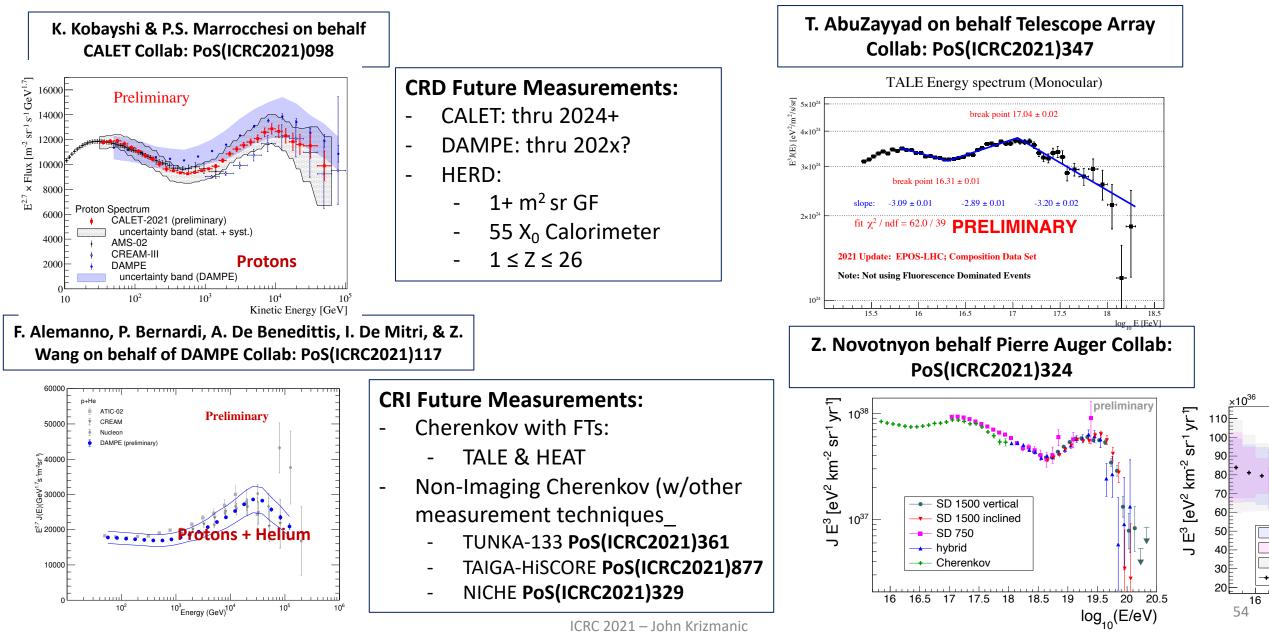
• 2022: physics run on nuclear fragmentation


measure most important channels for Li, Be, B, C, N GCRs



post-LS3 (2027+) program under discussion

ICRC 2021 – Michael Unger



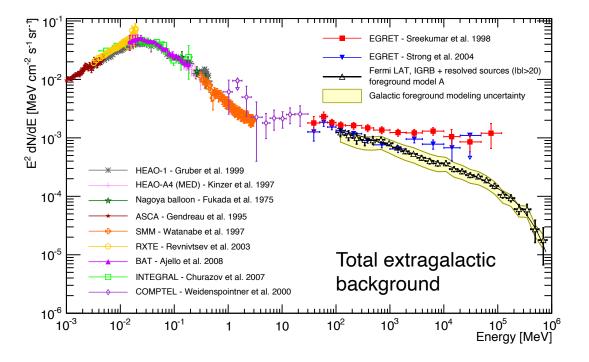
CRD + **CRI** : Cosmic Ray Spectrum Overlap of Measurements

Discussion 13: New instrumentation and Tools for EAS Detection

Wednesday 21 July 2021

Discussion: 13 New Instrumentation and Tools for EAS Detection | CRI (12:00 PM-1:30 PM)

Organize flash talks of 36 contributions, and discussions


<u>Conveners</u> Toshihiro Fujii Marco Casolino

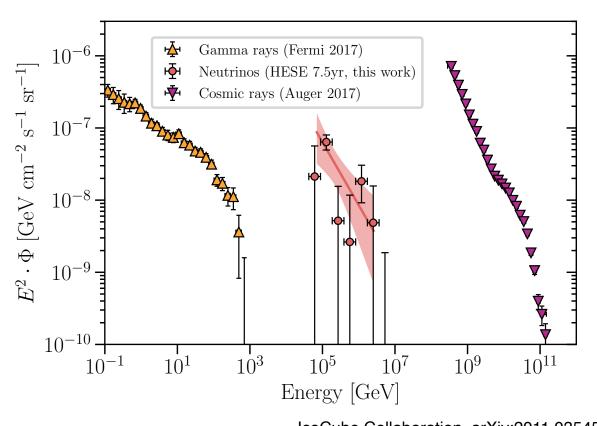
Connecting multi-wavelength and multi-particle observations⁴

X-rays

γ-rays

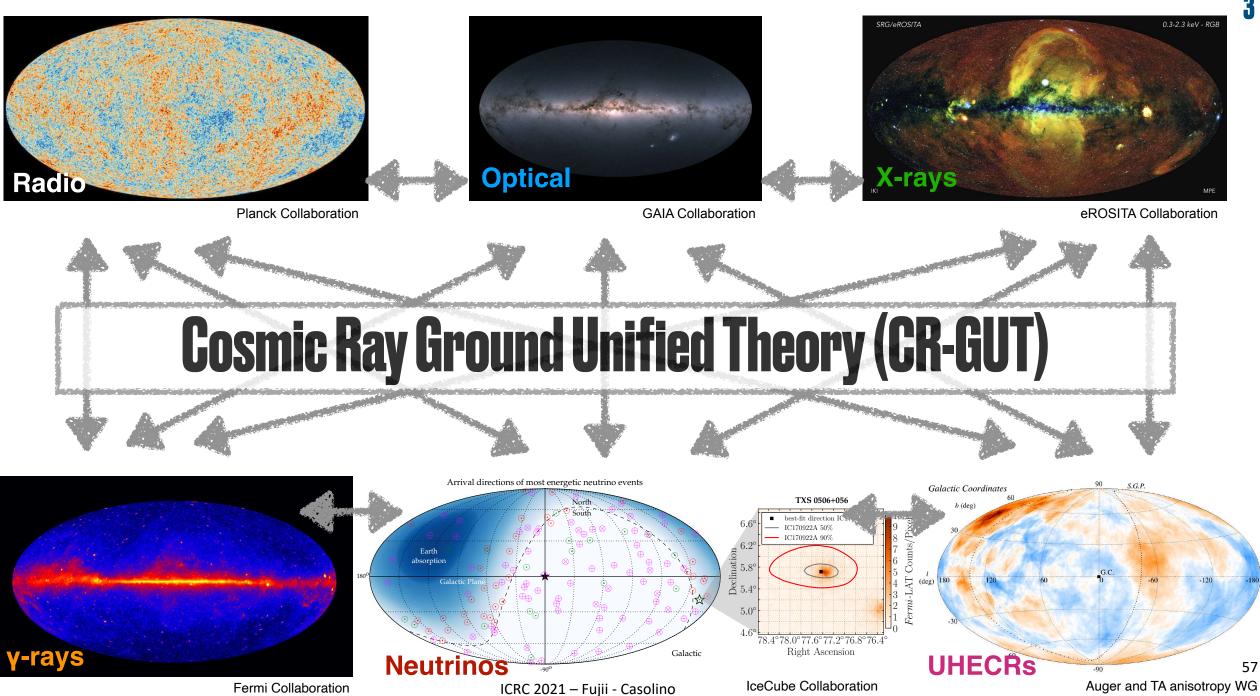
MeV

Fig. 10.— Comparison of the derived total EGB intensity (foreground model A) to other measurements of the X-ray and γ -ray background. The error bars on the LAT measurement include the statistical uncertainty and systematic uncertainties from the effective area parametrization, as well as the CR background subtraction. Statistical and systematic uncertainties have been added in quadrature. The shaded band indicates the systematic uncertainty arising from uncertainties in the Galactic foreground. (Note that the EGRET measurements shown are measurements of the IGRB. However, EGRET was more than an order of magnitude less sensitive to resolve individual sources on the sky than the *Fermi*-LAT.)


Fermi-LAT collaboration, Astrophys.J. 799 (2015) 86

γ-rays

N


Neutrinos

UHECRs

IceCube Collaboration, arXiv:2011.03545 Intriguing for both theorists and <u>experimentalists</u> Similar sensitivity at <u>Space, South-pole and Desert</u>

ICRC 2021 - Fujii - Casolino

Fermi Collaboration

Auger and TA anisotropy WG

Strategies for New instrumentations and tools

- Small instrument but "punchy"
- Low cost detectors
- Wide field-of-view for transient sources and time-domain astronomy
- Upgrade electronics
- Drone-borne calibration sources
- Detailed simulations using high-computing resources

New instrumentations and tools for EAS detection

ROBAST 3	OKUMURA, Akira
Electrical signals induced in detectors by cosmic rays: a reciprocal look at electrodynamics	WINDISCHHOFER, Philipp
Simulation of single, double, and triple layer GEM detectors	JUNG, Aera
CORSIKA below the knee	WIBIG, Tadeusz
Study of the Electron-Neutron Detector Array (ENDA) in Yangbajing, Tibet	XIAO, Dixuan
Latest results of ultra-high-energy cosmic ray measurements with prototypes of the Fluorescence detector Array of Single-pixel Telescopes (FAST)	FUJII, Toshihiro
FOV direction and real image size calibration of Fluorescence Detector using light source mounted on the UAV	NAKAZAWA, Arata
New coordinate-tracking detector on drift chambers for registration of muons in near-vertical EAS	VOROBEV, Vladislav
Status of the novel CORSIKA 8 air shower simulation framework	ALVES JUNIOR, Antonio Augusto
Development of drone-borne aerial calibration pulser system for radio observatories of ultra-high energy air showers	KUO, Chung-Yun
Acquisition of data from a Water Cherenkov Detector based on an on purpose acquisition card	MORENO BARBOSA, Eduardo
Pulse Shape Discrimination for Online Data Acquisition in Water Cherenkov Detectors Based on FPGA/SoC	GARCIA ORDONEZ, Luis Guillermo
Efficiency estimation of self-triggered antenna clusters for air-shower detection	BEZYAZEEKOV, Pavel

New instrumentations and tools for EAS detection

The YAG Lidar System Applied in LHAASO	SUN, Qinning
Calibration of LHAASO-WFCTA	CHEN, Long
Application of the nitrogen laser calibration system in LAASO-WFCTA	LI, Xin
Denoising cosmic rays radio signal using Wavelets techniques	WATANABE, Clara
Adaptive predictor as trigger mechanism for cosmic ray radio signals corrupted by Gaussian noise	WATANABE, Clara
Status of simulation and data comparison of wcda-1	WU, hanrong
An Advanced Triggerless Data Acquisition System for GRAPES-3 Muon Detector	JAIN, Atul
Integration and qualification of the Mini-EUSO telescope on board the ISS	CAMBIÈ, Giorgio
EUSO-SPB2 Telescope Optics and Testing	KUNGEL, Viktoria
AugerPrime Upgraded Unified Board: The New Front-End Electronics	MARSELLA, Giovanni
Towards a full and realistic simulation framework for the Extreme Energy Events experiment	GRAZZI, Stefano
Development of a scintillation and radio hybrid detector array at the South Pole	OEHLER, Marie
Reconstruction of sub-threshold events of cosmic-ray radio detectors using an autoencoder	BEZYAZEEKOV, Pavel
Electromagnetic Shower Simulation for CORSIKA 8	ALAMEDDINE, Jean-Marco

ĥ

New instrumentations and tools for EAS detection

The XY Scanner - A Versatile Method of the Absolute End-to-End Calibration of Fluorescence Detectors	SCHÄFER, Christoph
Progress in optimizing the detection surface structure of CRAFFT	KUBOTA, Yuto
Development of autonomous observation system for next-generation cosmic ray telescope	TOMIDA, Takayuki
Tunka-Rex Virtual Observatory	LENOK, Vladimir
Overview of the Mini-EUSO \$\mu s\$ trigger logic performance	BATTISTI, Matteo
Sensitivity of the Tibet hybrid experiment (Tibet-III + MD) for primary proton spectra between 30 TeV and a few hundreds of TeV's	KURASHIGE, Daichi
A drone-borne installation for studying the composition of cosmic rays in the range of 1-1000 PeV by registering the reflected Cherenkov light of EAS	VAIMAN, Igor
Test of the Electron-Neutron Detector Array (ENDA) in Laboratory	YANG, Fan
Tools and Procedures for the ASTRI Mini-Array Calibration	MINEO, Teresa

ICRC 2021 – Fujii - Casolino

7