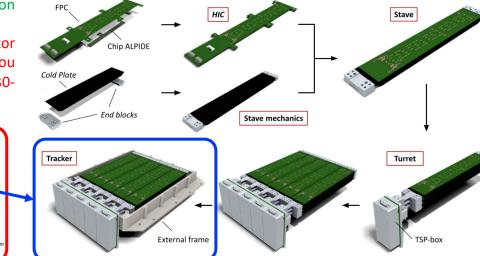

The innovative particle tracker for the HEPD space experiment onboard the CSES-02 satellite


LIMADOU 利瑪竇

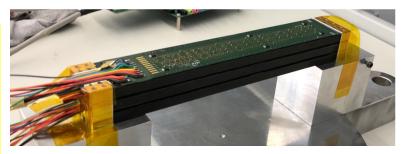
Roberto Iuppa *a,b,**, Stefania Beolé *c,d*, Silvia Coli *d*, Lorenzo De Cilladi *c,d*, Giuseppe Gebbia *a,b,e*, Ester Ricci *a,b*, Sergio Bruno Ricciarini *f*, Enrico Serra *b* and Paolo Zuccon *a,b a* University of Trento, *b* INFN-TIFPA, *c* University of Torino, *d* INFN-Sezione di Torino, *e* Fondazione Bruno Kessler, *f* IFAC-CNR

CSES-02 is the second satellite of a constellation devoted to Earth remote sensing (launch in 2022) Among payloads, the High-Energy Particle Detector (HEPD) has been designed by the Limadou Collabroation to measure 3-100 MeV electrons and 30-200 MeV/Z nuclei

[ICRC-681] roberto.iuppa@unitn.it

The particle tracker of HEPD-02 will be the **first spaceborne instrument to use Monolithic Active Pixel Sensors** (MAPS). The ALPIDE chip has been chosen, after good performance and high reliability proved for the ALICE experiment at CERN.

The tracker is made of 5 independent turrets (interfaced to the payload with the Tracker-Splitter (TSP) board. Each turret is made of three staves, with Hybrid Integrated Circuits (HIC) glued onto Aluminum/CFRP mechanics. The HIC is made of 10 ALPIDE chips glued and bonded onto a Flexible PCB (FPC).


3 active planes, 675 cm² active area in total, 150 sensors, 80 Mpixels

Very promising technology when compared to past space-missions:

Experiment	Year	Technology	Pitch [µm]	Res. [μm]	Surfac e [m²]	Power [W]	p. density [mW/cm²]	Life Span [yr]
FERMI-LAT	2008	1side µstrip	228		74	160	0.2	ongoing
DAMPE	2015	1side µstrip	121	70	7	90	1.3	ongoing
PAMELA	2006	2side µstrip	50(p) 67(n)	3	0.13	63	48	11
AMS-02	2011	2side µstrip	110(p) 208(n)	10(p) 30(n)	6.4	734	12	ongoing
HEPD-01	2018	2side µstrip	182	50	0.088	10	11	ongoing
HEPD-02	2022	MAPS	28	3	0.068	10.5	15	-

Thanks to MAPS technology, the HEPD-02 tracker will exploit innovative features like in-flight calibration with charge injection and online fast tracking with possible in-flight data selection.

If future technological improvements are considered, it becomes apparent that MAPS will be an important option for mid and large-size astroparticle experiments.

The **MAPS technology** for the HEDP-02 tracker has been **fully qualified for space applications**, successfully passing radiation hardness tests, electrical tests, mechanical and thermal stress tests (picture: turret ready for vibration tests)