## Julius-Maximilians-UNIVERSITÄT WURZBURG

### Introduction:

Blazars are a highly variable subclass of active galactic (AGN). Quasi periodic oscillations, which might originate a binary black hole located at the AGN core, have been in several blazar light curves. For the blazars Mrk 421 ar 501, different and sometimes conflicting results have reported <sup>1-5</sup>, depending on energy ranges and used met We analyse FACT light curves using a variety of me (generalized Lomb-Scargle Periodogram, CARMA, Wavep plane and NIFTy), studying in detail systematic effects, in to determine if the Markarians exhibit quasi pe oscillations.

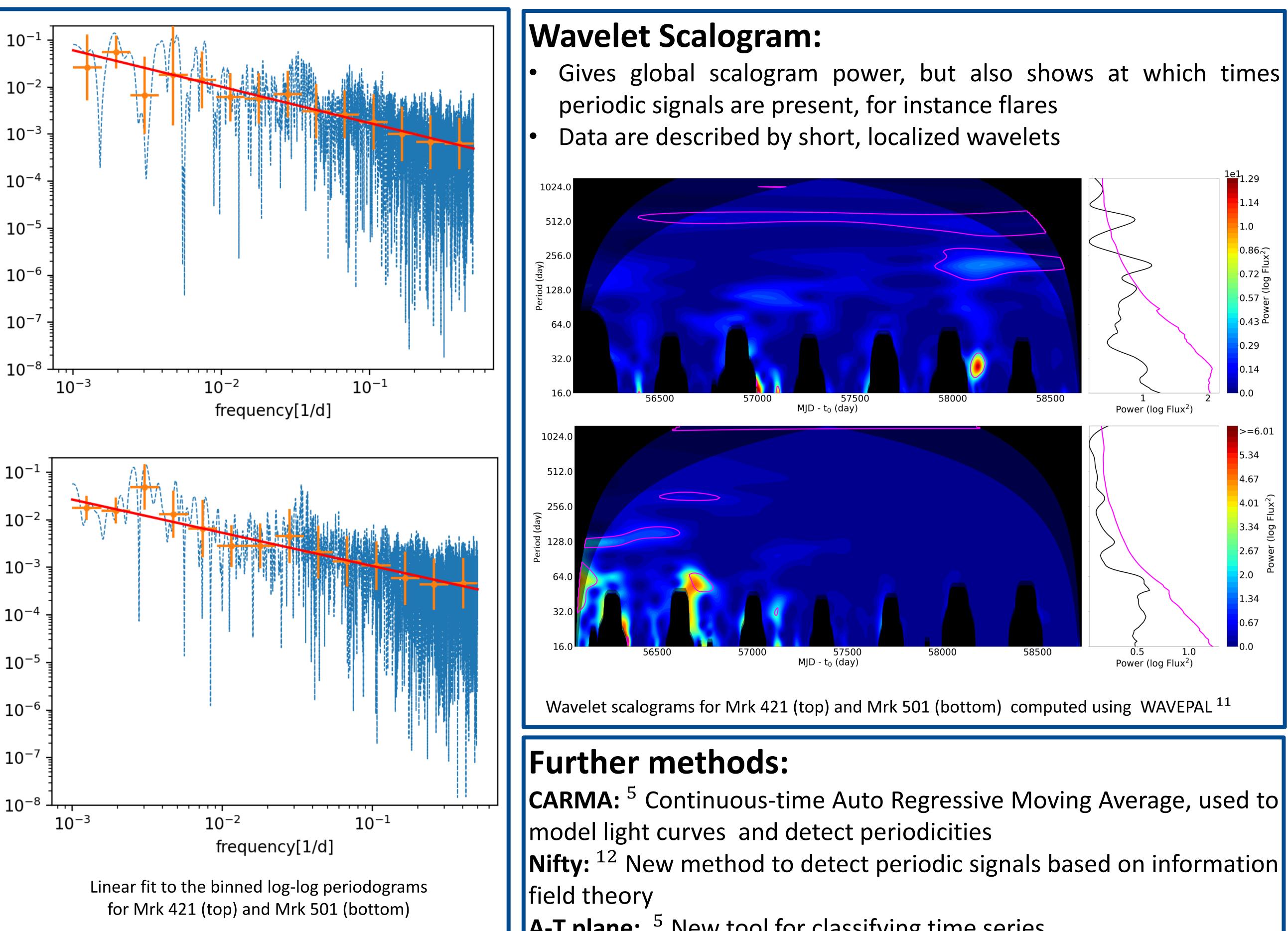
#### Data:

- 8 years of FACT data, binning: 20-min to monthly
- Yearly and monthly observational dependencies, zenith distance and the moon

### **Lomb-Scargle Periodogram:**

- We compute the general Lomb-Scargle periodogram <sup>6</sup> the Scipy implementation <sup>7</sup>
- Identical to Least squares spectral analysis
- Possible periodic signals from observational dependen
- Higher peaks at lower frequencies due to red noise<sup>8</sup>
- Modeling of red noise necessary for period significance estimations

#### **References:**

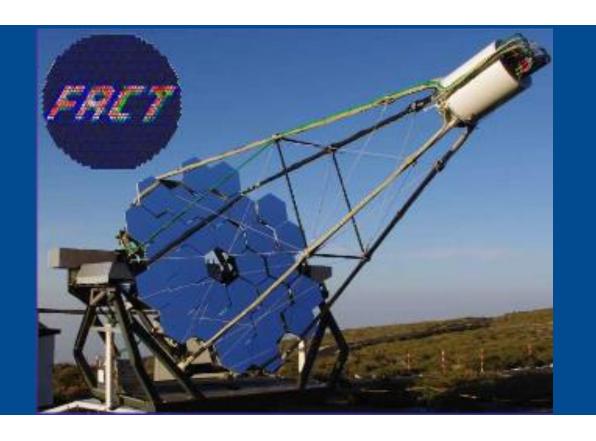

- Li et al. (2016), PASP, 128.965, p. 074101
- Bhatta & Dhital (2019), AJ, 891.2, 120
- Nilsson et al. (2018), A&A, 620, A185
- Sandrinelli et al. (2017), A&A, 600, A132
- Tarnopolski et al. (2020), ApJS, 250, 1
- Zechmeister & Kürster (2009), A&A, 496.2, pp. 577–58

# Periodicity Analysis of Mrk 501 and Mrk 421 in Gamma-Rays

**R. lotov** <sup>a</sup>, P. Arras <sup>b</sup>, M. Boettcher <sup>c</sup>, T. Bretz <sup>d</sup>, D. Dorner <sup>a</sup>, V. Eberle <sup>b</sup>, T. Enßlin <sup>b</sup>, A. Kostic <sup>b</sup>, M. Kreter <sup>c</sup>, V. Marchenko <sup>e</sup>, B. Schleicher <sup>a</sup>, M. Tarnopolski <sup>e</sup>, F. Theissen <sup>d</sup>, N. Żywucka <sup>c</sup>, for the FACT collaboration <sup>f</sup>

|                                                     | Significance Estimation:                                                                                                                                                                                                                                      |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e nuclei<br>te from<br>found<br>nd Mrk<br>e been    | <ul> <li>Fit of both flux distributions with combination<br/>of a log-normal and normal distribution, using<br/>Maximum Log-Likelihood estimation</li> </ul>                                                                                                  |
| ethods.<br>ethods<br>oal, A-T<br>n order<br>eriodic | <ul> <li>Modelling of red noise:</li> <li>binning the periodigram in log-log space</li> <li>=&gt; no bias on the fit by more densely sampled high frequencies</li> <li>Linear fit in log-log space, translating to a power-law P(f)~f<sup>-α</sup></li> </ul> |
|                                                     | <ul> <li>Result for steepness:</li> </ul>                                                                                                                                                                                                                     |
| due to                                              | <ul> <li>Mrk 501: α = 0.699</li> <li>Mrk 421: α = 0.774</li> <li>Power spectrum density and flux distribution of FACT data as input for artificial <sup>9</sup> light curves generated with the python implementation <sup>10</sup></li> </ul>                |
| <sup>6,</sup> using                                 | <ul> <li>Observational windows reduce the measured<br/><i>α</i> through red noise leakage         =&gt; generation of light curves with higher α'         and applying window function         </li> </ul>                                                    |
| ncies<br>dogram                                     | <ul> <li>=&gt; Determine needed input red noise α'</li> <li>Final step: simulate ~10k artificial light curves and determine the significance of the periodograms numerically</li> </ul>                                                                       |
|                                                     |                                                                                                                                                                                                                                                               |

- 7. https://Scipy.org
- 8. Vaughan (2005), A&A, 431, 391-403
- 9. Emmanuanopolis et al. (2013), MNRAS, 433, 907
- 10. Connolly (2015), <u>http://arxiv.org/abs/1503.06676</u>
- 11. Lenoir & Crucifix (2018), Nonlin. Processes Geophys., 25, 175
- 12. Kreter (2019 Proc Int Astron Union. 15(S356), 369-369.




### **Results from all methods - paper in preparation!**

#### **Acknowledgements/Affiliations:**

- Lehrstuhl für Astronomie, Universität Würzburg
- b) Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching, Germany
- Centre of Space Research, North-West University, Potchefstroom 2520, South Africa





**A-T plane:** <sup>5</sup> New tool for classifying time series

- d) III. Physikalisches Institut A, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
- e) Astronomical Observatory, Jagiellonian University, Orla 171, 30–244, Kraków, Poland
- f) https://fact-project.org/collaboration/icrc2021\_authorlist.html