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(a) E >10 TeV (b) E >100 TeV

FIG. S2. Significance maps around the Crab nebula observed by the Tibet AS+MD array for (a) E > 10 TeV and for (b)
E > 100 TeV, respectively. The cross mark indicates the Crab pulsar position.

MUON DISTRIBUTION MEASURED BY THE MD ARRAY

In this paper, the total number of particles detected in the MDs (i.e. ⌃Nµ) is used as the parameter to discriminate
cosmic-ray induced air showers from photon induced air showers. As shown in Fig. 2 in the paper, the muon cut
threshold depends on the ⌃⇢, where ⌃⇢ is roughly proportional to energy, and ⌃⇢ = 1000 roughly corresponds to
100 TeV.

For E > 100 TeV, the averaged ⌃Nµ for the cosmic-ray background events is more than 100, while the muon cut
value is set to be approximately ⌃Nµ = 10 ⇠ 30 depending on ⌃⇢. As a result, we successfully suppress 99.92% of
cosmic-ray background events with E > 100 TeV, and observe 24 photon-like events after the muon cut.

Figure S3 shows the relative muon number (Rµ) distribution above 100 TeV for the Crab nebula events. Rµ is
defined as the ratio of the observed ⌃Nµ to the ⌃Nµ on the muon cut line in Fig. 2 at the observed ⌃⇢. Three
events among 24 photon-like evens have ⌃Nµ = 0 which corresponds to the leftmost bin corresponds Rµ = 0 in
Fig. S3. We find a clear bump of muon-less events in Rµ < 1 region, and the relative muon distribution after the
muon cut (Rµ < 1) is consistent with that estimated by the photon MC simulation. This is unequivocal evidence for
the muon-less air showers induced by the primary photons from an astrophysical source.
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FIG. S3. Relative muon number (Rµ) of the Crab nebula events with E > 100 TeV. Rµ is defined as the ratio of the observed
⌃Nµ to the ⌃Nµ value on the muon cut line in Fig. 2 at the observed ⌃⇢. The leftmost bin indicates the number of events with
Rµ = 0. The black points show the number of observed events from the Crab nebula. The solid red histograms and dashed
blue histograms show the photon MC simulation and the observed cosmic-ray background events, respectively. The central
vertical dashed line indicates the muon cut position at Rµ = 1.

Tibet AS ! Collaboration, 
PRL 123, 051101 (2019)

We have looked for correlations between the sources of
systematic uncertainty and have not found any. Therefore, the
effect of each source of systematic uncertainty can be added in
quadrature to the others. The systematic uncertainties on each
of the fit parameters in the log-parabola likelihood fit can be
seen in Table 5.

The major sources of systematic uncertainty are described
below. Figure 13 shows the shift due to systematics in
E2dN/dE as a function of energy for each estimator.

4.5.1. Angular Resolution Discrepancy

A discrepancy in the 68% containment between data and
simulation can be seen in Figure 8. While the cause of this is
not immediately clear, it is thought to be at least partially
caused by the shower curvature model used during reconstruc-
tion not yet having an energy dependence.

The 68% containment in the Monte Carlo is underestimated
by approximately 5%. The effect of this has been investigated
by scaling the PSF up by this amount and refitting the Crab
Nebula. The maximum effect on the flux is ∼5%, occurring at
the lowest energies (see Figure 13). At the highest energies this
effect is almost completely negligible.

4.5.2. Late Light Simulation

This was the largest source of uncertainty (∼40% in flux) in
Abeysekara et al. (2017a) and arose from a mismodeling of the
late light in the air shower. This is thought to stem from a
discrepancy between the time width of the laser pulse used for
calibration and the time structure of the actual shower. From
simulation, it is expected that the width of the arrival time
distribution of single photoelectrons (PEs) at the PMT should
be 10 ns, but examining the raw PE distributions in data
shows a discrepancy above 50 PEs. Improved studies of the
PMTs have decreased the size of this uncertainty in this work,
although it is still one of the dominant sources of uncertainty.
Systematic uncertainties have been derived by varying the size
of this effect and observing the impact on the flux.

4.5.3. Charge Uncertainty

The charge uncertainty encapsulates how much a PMT
measurement will vary for a fixed amount of light, as well as
the relative differences in photon detection efficiency from
PMT to PMT. The amount of uncertainty has been varied and
the effect on the flux studied. This is not a dominant source of
systematic uncertainty.

4.5.4. Absolute PMT Efficiency/Time Dependence

The absolute PMT efficiency cannot be precisely determined
using the calibration system (see Abeysekara et al. 2017a for a
discussion). Instead, an event selection based on charge and
timing cuts is implemented to identify incident vertical muons.
Vertical muons provide a monoenergetic source of light and
can be used to measure the relative efficiency of each PMT by
matching the muon peak position to the expected one from the
MC simulations. These efficiencies were determined for
different epochs in time and used to measure the range of
uncertainties. This is one of the dominant sources of
uncertainty, along with the late light simulation.

Figure 12. Significance map above 56 TeV in reconstructed energy for the GP (left) and NN (right). The maximum significance is 11.2σ for the GP and 11.6σ for the
NN. Both significance maps have been smoothed for presentation purposes.

Table 5
Systematic Uncertainties on Fit Parameters

Estimator Parameter Sys. Low Sys. High

GP f0 −2.11×10−14 2.00×10−14

α −0.03 0.01
β −0.03 0.01

NN f0 −1.69×10−14 3.23×10−14

α −0.02 0.03
β −0.02 0.02

Note. The systematic uncertainties on the fit parameters, for each estimator.
The units for f0 are TeV cm−2 s−1.
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Extended Data Fig. 5 | Phenomenological fits to the γ−ray observations of 
LHAASO J1908+0621, and previous observations of potential counterparts. 
The inset shows the KM2A significance map, indicating the potential 
counterparts of the UHE γ-ray source. The colour bar shows the significance 
( TS). The green circle indicates the PSF of LHAASO. The Fermi LAT points for 
LHAASO J1908+0621 analysed in this work, as well as ARGO48, HESS49 and 
HAWC4 data, are shown together with the LHAASO measurements. The dotted 
curve shows the leptonic model of radiation, assuming an injection of electron/
positron pairs according to the pulsar’s spin-down behaviour, with a breaking 
index of 2 and an initial rotation period of 0.04 s. A fraction of 6% of the current 
spin-down power of the pulsar PSR J1907+0602 at a distance of 2.4 kpc is 
assumed to be converted to e± pairs to support the γ-ray emission. The injection 
spectrum of electrons is assumed to be N E E E( ) ∝ exp{−[ /(800 TeV)] }e

2
e
−1.75 .  

The solid curves correspond to the hadronic model of radiation. Two types of 
energy distributions are assumed for the parent proton population: (i) a single 
power-law spectrum of parent protons, N(E) ≈ E−1.85exp[−E/(380 TeV)] (thin solid 
curve); (ii) a broken power-law spectrum with an exponential cutoff of parent 
protons, with indices 1.2 and 2.7 below and above 25 TeV, respectively, and a 
cutoff energy of 1.3 PeV (thick solid curve). In the inset sky map, the black 
diamond shows the position of PSR J1907+0602, the black contours correspond 
to the location of supernova remnant SNR G40.5-0.5 and the white circle is the 
position and size of HESS J1908+063. The cyan regions are the dense clumps 
described in Methods. The average density in the whole γ-ray emission region is 
estimated to be about 10 cm−3. γ-ray absorption due to photon–photon pair 
production (see Methods) is taken into account in the theoretical curve.

LHAASO Collaboration, 
Nature, 594, 33-36 (2021)

best-fit Nishimura-Kamata-Greisen (NKG) function [20].
The energy resolutions with S50 are roughly estimated to
be 20% and 10% for 100 and 400 TeV, respectively. The
absolute energy scale uncertainty was estimated to be 12%
from thewestwarddisplacement of theMoon’s shadowcenter
due to the geomagnetic field [21]. The live time of the dataset
is 719 days fromFebruary 2014 toMay 2017, and the average
effective detection time for the Galactic plane observation is
approximately 3700 h at the zenith angle less than 40°. The
data selection criteria are the same in our previous work [12]
except for the muon cut condition. According to the CASA-
MIA experiment, the marginal excess along the Galactic
plane in the sub-PeV energies is 1.63 σ, and the fraction of
excess to cosmic-ray background events is estimated to be
approximately 3 × 10−5 [18]. In order to search for signals
with such a small excess fraction,we adopt a tightmuon cut in
the present analyses requiring for gamma-ray-like events to
satisfyΣNμ < 2.1 × 10−4 ðΣρÞ1.2 or ΣNμ < 0.4, where ΣNμ

is the total number of muons detected in the underground
muon detector array. This is just one order of magnitude
tighter than the criterion used in our previous work [12]. The
cosmic-ray survival ratio with this tight muon cut is exper-
imentally estimated to be approximately 10−6 above 400TeV,
while the gamma-ray survival ratio is estimated to be 30% by
the MC simulation. The comparison between the cosmic-ray
data and the MC simulation is described in Fig. S1 in
Supplemental Material [22].
Results and discussion.—Figure 1 shows arrival direc-

tions of gamma-ray-like events in (a) 100ð¼102.0Þ < E <
158ð¼102.2Þ TeV, (b) 158ð¼102.2Þ<E<398ð¼102.6ÞTeV,
and (c) 398ð¼102.6Þ < E < 1000ð¼103.0Þ TeV, remaining
after the tight muon cut. It is seen that the observed arrival
directions concentrate in a region along the Galactic plane
(see also Fig. 2). Particularly in Fig. 1(c), 23 gamma-ray-
like events are observed in jbj < 10° which we define as the
on region (NON ¼ 23), while only ten events are observed
in jbj > 20° which we define as the off region (NOFF ¼ 10).
Since the total number of events before the tight muon cut
is 8.6 × 106, the cosmic-ray survival ratio is estimated to be
1.2 × 10−6 in jbj > 20° above 398 TeV. We use NOFF in
jbj > 20° to estimate the number of cosmic-ray background
events, because the contribution from extragalactic gamma
rays in E > 100 TeV is expected to be strongly suppressed
due to the pair-production interaction with the extragalactic
background light. The mean free path lengths for the pair
production for 100 TeV and 1 PeV are a few megaparsecs
and 10 kpc, respectively [29].
Since the ratio (α) of exposures in on and off regions is

estimated to be 0.27 by the MC simulation with our
geometrical exposure, the expected number of background
events in the on region with jbj < 10° is NBG ¼ αNOFF ¼
2.73, and the Li-Ma significance [30] of the diffuse gamma
rays in the on region is calculated to be 5.9 σ. The number
of events and the significances in each energy bin are
summarized in Table S1 in Supplemental Material [22].

The observed distribution of the number of muons for
E > 398 TeV after the muon cut is consistent with that
estimated from the gamma-ray MC simulation as shown in
Fig. S2 in Supplemental Material [22]. The highest-energy
957ðþ166

−141ÞTeV gamma ray is observed near the Galactic
plane, where the uncertainty in energy is defined as the
quadratic sum of the absolute energy-scale error (12%) and
the energy resolution [12]. Solid circles in Fig. 2 display
NON − NOFF as a function of b in (a) 100 < E < 158 TeV,
(b) 158 < E < 398 TeV, and (c) 398 < E < 1000 TeV.
The concentration of diffuse gamma rays around the
Galactic plane is apparent particularly in Fig. 2.
In order to estimate contribution from the known

gamma-ray sources, we searched for gamma-ray signals

FIG. 1. The arrival direction of each gamma-ray-like event
observed with (a) 100 < E < 158 TeV, (b) 158<E<398TeV,
and (c) 398 < E < 1000 TeV, respectively, in the equatorial
coordinate. The blue solid circles show arrival directions of
gamma-ray-like events observed by the Tibet ASþMD array.
The area of each circle is proportional to the measured energy of
each event. The red plus marks show directions of the known
Galactic TeV sources (including the unidentified sources) listed
in the TeV gamma-ray catalog [9]. The solid curve indicates the
Galactic plane, while the shaded areas indicate the sky regions
outside the field of view of the Tibet ASþMD array.
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cosmic ray density profile above 100 GeV from ref. 19, which clearly 
favours the 1/r profile. Alternatively, the 1/r profile is less striking 
for TeV cosmic rays because of their escape time.

The angular size of the Cygnus Cocoon is about 2.1°, which trans-
lates into a radius of r = 55 pc at 1.4 kpc. The size of the Cocoon is 
similar in both the TeV and GeV energy range. Assuming a loss-free 
regime, the particles from tens of GeV to hundreds of TeV diffuse 
in the region over a time tdiff given by tdiff = r2/(2D) (ref. 20), where D 
is the particle diffusion coefficient. If D(E*) = β D0(E*), where D0(E*) 
is the average diffusion coefficient in the Galaxy at a given energy E* 
and β is the suppression coefficient, then at 10 GeV
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The diffusion time (tdiff) of 10 GeV particles detected with 
Fermi-LAT needs to be shorter than the age of the Cyg OB2 associa-
tion tage, that is, tdiff (10 GeV) < tage ≈ 1−7 Myr (ref. 21), which yields 
β > 0.002. By contrast, the diffusion time of 100 TeV particles must 
be longer than the light-travel time to the edges of the Cocoon, 
tdiff (100 TeV) ≫ Rdiff/c, where Rdiff is the diffusion radius and c is the 
speed of light. With D0(100 TeV) = 3 × 1030 cm2 s−1, we obtain β ≪ 1. 
The combination of observations by the GeV and TeV instruments 
provides unique insights to particle transport in the Cocoon super-
bubble. The ‘suppression of the diffusion coefficient’ (β) is found to 
be 0.002 < β ≪ 1. This confirms that closer to particle injectors, high 
turbulence is driven by the accelerated particles, and cosmic rays 
are likely to diffuse more slowly than in other regions of the Galaxy.

As discussed in ref. 10, although the PWN powered by PSR 
J2021+4026 and PSR J2032+4127 cannot explain this extended 
Cocoon emission, we cannot rule out that the emission could be 
from a yet-undiscovered PWN. The nearby γ Cygni SNR might 
not have been able to diffuse over the Cocoon region because of 
its young age10. The γ-ray emission measured from the Cocoon 

region over five orders of magnitude in energy is likely produced by  
protons in the GeV to PeV range that collide with the ambient dense 
gas. The spectral shape in the TeV energy range is well described by 
a power law without an indication of a cut-off up to energies above 
100 TeV. Therefore, it might be the case that the powerful shocks 
produced by multiple strong star winds in the Cygnus Cocoon can 
accelerate particles, not only to energies up to tens of TeV as previ-
ously indicated by the Fermi-LAT detection, but even beyond PeV 
energies. However, the presence of a cut-off or a break in the GeV to 
TeV γ-ray spectrum at a few TeV, as evidenced in the measurements 
of both ARGO and HAWC detectors, argues against the efficiency 
of the acceleration process beyond several hundred TeV.

The break in the γ-ray spectrum around a few TeV could be due 
to either leakage of cosmic rays from the Cocoon or a cut-off in the 
cosmic ray spectrum injected from the source. In the first scenario, 
the γ-ray emission is dominated by recent starburst activities less 
than 0.1 Myr ago. The diffusion length in the Cocoon is 100–1,000 
times less than that in the interstellar medium owing to strong mag-
netic turbulence10 that is plausibly driven by starburst activities. The 
lower-energy cosmic rays are confined by the magnetic field of the 
Cocoon, whereas higher-energy cosmic rays escape from the region 
before producing γ rays, which results in a spectral break from GeV 
to TeV regime. An injection index of α ≈ −2.1 for the cosmic ray spec-
trum is needed to explain the Fermi-LAT observation. Such a spec-
trum can be achieved by different particle acceleration mechanisms, 
for example through shock acceleration. An example of the leakage 
model is illustrated as the thick solid grey line in Fig. 2a. Assuming 
a recent activity that happened 0.1 Myr ago and a gas density of 30 
nucleons per cm3 as suggested by H i and H ii observations22, the 
proton injection luminosity is found to be Lp ≈ 4 × 1037 erg s−1 above 
1 GeV (Methods). The data above 100 TeV suggest that the stellar 
winds inject protons to above PeV with a hard spectrum.

In the second scenario, the γ-ray emission is produced by contin-
uous starburst activities over the OB2 star lifetime, 1–7 Myr. In this 
scenario, a hard cosmic ray spectrum of α ≈ −2.0, depending on the 
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declination (dec.) = 41.51° ± 0.04°), which is a slightly extended 
source with a Gaussian width of 0.27° and is possibly associated 
with the PWN TeV J2032+4130 (refs. 12,13), and HAWC J2030+409, 
which is a very-high-energy counterpart of the GeV Cygnus 
Cocoon10 (Methods). The region after subtraction of HAWC 
J2031+415 (PWN) and 2HWC J2020+403 (γ Cygni) is shown  
in Fig. 1b.

HAWC J2030+409 contributes ~90% to the total flux detected 
at the ROI and is detected with a test statistic (equation (1), likeli-
hood ratio test), TS, of 195.2 at the position RA = 307.65° ± 0.30°, 
dec. = 40.93° ± 0.26°. The extension is well described by a 
Gaussian profile with a width of 2.13° ± 0.15° (stat.) ± 0.06° (syst.). 
The location and the Gaussian width of the source are consistent 
with the measurements by Fermi-LAT from above 1 GeV to a few 
hundred GeV.

The spectral energy distribution of the Cygnus Cocoon 
has been extended from 10 TeV in the previously published  
measurement by the ARGO observatory14 to 200 TeV in this 
analysis. The measurement above 0.75 TeV can be described 
by a power-law spectrum E/�E& = /
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/

�

= ���

+���

−���

(TUBU�)+����

−����

(TZTU�)×10−13 cm−2 s−1 TeV−1 and the spec-
tral index is Γ = −����

+����

−����

(TUBU�)+����

−����

(TZTU�). The flux is compat-
ible with an extrapolation from the Fermi-LAT measurement at 
1–300 GeV (refs. 10,15). Compared to Γ = −2.1 in the Fermi-LAT GeV 
data, a significant softening of the energy spectral density is evident 
at a few TeV in the ARGO data14 and persists beyond 100 TeV in the 
HAWC data (Fig. 2a).

GeV γ rays observed by Fermi-LAT can be produced either by 
high-energy protons interacting with gas or by high-energy elec-
trons upscattering stellar radiation and dust emission10. Above a few 
TeV, the inverse-Compton process between relativistic electrons 
and stellar photons is suppressed by the Klein–Nishina effect. If 
produced by electrons, the γ-ray emission is therefore not expected 

to be peaked toward the stellar clusters, but rather trace the dif-
fuse dust emission across the entire Cocoon. This adds difficulty to 
the task of distinguishing the leptonic and hadronic origins of the 
γ-ray radiation. The measurements of the Cygnus Cocoon emission 
above 10 TeV break the degeneracy of the two origins. As shown 
in Extended Data Fig. 1, we find it unlikely that a single electron 
population produces γ rays from GeV to the highest energy by 
inverse-Compton emission without its synchrotron radiation vio-
lating the flux constraints posed by radio16 and X-ray17 observations. 
The leptonic origin of the γ-ray radiation by the Cygnus Cocoon is 
therefore disfavoured as uniquely responsible for the observed GeV 
and TeV flux.

The cosmic ray energy density above a proton energy of 10 TeV 
is calculated for four annuli up to 55 pc from Cyg OB2 (Fig. 2b). We 
find that the cosmic ray energy density in all spatial bins is larger 
than the local cosmic ray energy density of 10−3 eV cm−3 based on 
Alpha Magnetic Spectrometer measurements18. Therefore, as for the 
GeV γ rays10, TeV γ rays come from the freshly accelerated cosmic 
rays inside the Cygnus Cocoon, rather than from the older Galactic 
population.

The radial profile of the cosmic ray density yields information 
on the mechanism that accelerates particles in the Cygnus Cocoon. 
Assuming that a cosmic ray accelerator has been active in the cen-
tre of the region at a radius of r = 0, roughly at the location of Cyg 
OB2, a 1/r dependence of the cosmic ray density would imply that 
the acceleration process has continuously injected particles in the 
region for 1–7 Myr. A continuous acceleration process, which can-
not be guaranteed by a single supernova explosion event, could be 
produced by the combined and long-lasting effect of multiple pow-
erful star winds. Conversely, a constant radial profile would imply a 
recent (< 0.1 Myr) burst-like injection of cosmic rays, such as from a 
supernova explosion event. Although the measured cosmic ray pro-
file seems to agree with a 1/r dependence, a constant profile, namely 
a burst-like injection, cannot be excluded. This is in contrast to the 
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Fig. 1 | Significance map of the Cocoon region before and after subtraction of the known sources at the region. a, Significance map of the Cocoon region. 
The map is in Galactic coordinates, where b and l refer to latitude and longitude, respectively. It is produced as described in ref. 11. The blue contours are 
four annuli centred at the OB2 association as listed in Supplementary Table 1. The green contour is the ROI used for the study, which masks the bright 
source 2HWC J2019+367. b, Significance map of the Cocoon region after subtracting HAWC J2031+415 (PWN) and 2HWC J2020+403 (γ Cygni). The 
light-blue, medium-blue and dark-blue dashed lines are contours for 0.16, 0.24 and 0.32 photons per 0.1°!×!0.1° spatial bin, respectively, from Fermi-LAT 
Cocoon10. Both maps are made assuming a 0.5° extended disk source and a spectral index of −2.6 with 1,343 days of HAWC data.
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◦ ◦

< Erec <

∆ ◦± ◦ ∆ ◦± ◦

OLQDWLRQ (DHc) UHODWLYH WR WKH NQRZQ CUDE SRVLWLRQ (R.A. =
83.63 , DHc = 22.02 , J2000.0 HSRFK) DUH VKRZQ LQ FLJ.
15. TKH ODVW HQHUJ\ SRLQW LQ FLJ. 15 LV REWDLQHG XVLQJ WKH
ELQV ZLWK 100 TH9 1 PH9. :KHQ D FRQVWDQW YDOXH
LV  XVHG  WR  ILW  WKH  SRVLWLRQV  DW  DOO  HQHUJLHV,  ZH  REWDLQ
R.A. = í0.024 0.016 ,  DHc = 0.035 0.014 .

◦
◦

◦

◦ >
σ

∆
◦± ◦ ∆ ◦± ◦

TKH  CUDE  NHEXOD  FDQ  EH  REVHUYHG  E\  KM2A  IRU
DERXW  7.4  KU  SHU  GD\  ZLWK  D  ]HQLWK  DQJOH  OHVV  WKDQ  50 ,
FXOPLQDWLQJ DW  7 .  TKH REVHUYDWLRQ WLPH IRU ]HQLWK DQJOH
OHVV  WKDQ  30   LV  4.3  KU  SHU  GD\.  TR  FKHFN  IRU  D  SRVVLEOH
V\VWHPDWLF SRLQWLQJ HUURU DW ODUJH ]HQLWK DQJOHV, WKH REVHU-
YDWLRQ  RI  WKH  CUDE  NHEXOD  DW  ]HQLWK  DQJOHV  KLJKHU  WKDQ
30   LV  DQDO\]HG  VHSDUDWHO\.  AW  HQHUJLHV  25  TH9,  WKH
DFKLHYHG  VLJQLILFDQFH  LV  12 ,  DQG  WKH  REWDLQHG  SRVLWLRQ
UHODWLYH  WR  WKH  NQRZQ  CUDE  SRVLWLRQ  LV  R.A.  =
í0.073 0.042 ,  DHc  =  0.074 0.032 .  TKLV  UHVXOW  LV
URXJKO\ FRQVLVWHQW ZLWK WKDW REWDLQHG XVLQJ DOO GDWD ZLWK-
LQ VWDWLVWLFDO HUURUV.

◦

AFFRUGLQJ  WR  WKHVH  REVHUYDWLRQV  RI  WKH  CUDE  NHEXOD,
WKH  SRLQWLQJ  HUURU  RI  KM2A  IRU  Ȗ-UD\  HYHQWV  FDQ  EH
GHPRQVWUDWHG WR EH OHVV WKDQ 0.1 .

D.    AQJXODU UHVROXWLRQ

◦

θ2

θ

σPSF

AFFRUGLQJ  WR  D  UHFHQW  HESS  PHDVXUHPHQW  >30@,  WKH
LQWULQVLF  H[WHQVLRQ RI  TH9 Ȗ-UD\ HPLVVLRQ IURP WKH CUDE
NHEXOD  LV  DERXW  0.014 .  CRPSDUHG  ZLWK  WKH  PSF  RI  WKH
KM2A  GHWHFWRU,  WKH  LQWULQVLF  H[WHQVLRQ  LV  QHJOLJLEOH.
TKHUHIRUH,  WKH  DQJXODU  GLVWULEXWLRQ  RI  Ȗ-UD\V  GHWHFWHG  E\
KM2A IURP WKH CUDE NHEXOD VKRXOG EH PDLQO\ GXH WR WKH
GHWHFWRU  DQJXODU  UHVROXWLRQ.  FLJXUH  16  VKRZV WKH   PHDV-
XUHG  DQJXODU  GLVWULEXWLRQ  LQ  KM2A  GDWD  LQ  WZR  HQHUJ\
UDQJHV. TKH VROLG-DQJOH GHQVLW\ RI UHFRUGHG HYHQWV LQ WKH
YLFLQLW\ RI WKH CUDE NHEXOD LV VKRZQ DV D IXQFWLRQ RI  ,
ZKHUH    LV WKH  DQJOH  WR  WKH  CUDE GLUHFWLRQ.  TKH GLVWULEX-
WLRQ  LV  JHQHUDOO\  FRQVLVWHQW  ZLWK  WKH  DQJXODU  UHVROXWLRQ
REWDLQHG  XVLQJ  MC  VLPXODWLRQV.  FRU  HDFK  HQHUJ\  ELQ,  D
GDXVVLDQ  IXQFWLRQ  LV  XVHG  WR  ILW  WKH  DQJXODU  GLVWULEXWLRQ
VKRZQ LQ WKH OHIW-KDQG DQG PLGGOH SDQHOV RI FLJ. 16. TKH
UHVXOWLQJ    IURP CUDE GDWD  LV  FRQVLVWHQW  ZLWK  VLPXOD-

WLRQV, DV VKRZQ LQ WKH ULJKW-KDQG SDQHO RI FLJ. 16.

E.    6SHFWUDO HQHUJ\ GLVWULEXWLRQ

s
σNs

= J ·Eα

α χ2

TKH Ȗ-UD\ IOX[ IURP WKH CUDE NHEXOD LV HVWLPDWHG XV-
LQJ WKH QXPEHU RI H[FHVV HYHQWV (N ) DQG WKH FRUUHVSRQG-
LQJ VWDWLVWLFDO XQFHUWDLQW\ ( ) LQ HDFK HQHUJ\ ELQ. TKH Ȗ-
UD\ HPLVVLRQ IURP WKH CUDE NHEXOD LV DVVXPHG WR IROORZ
D  SRZHU-ODZ  VSHFWUXP  I(E) .  TKH  UHVSRQVH  RI  WKH
KM2A GHWHFWRU ZDV VLPXODWHG E\ WUDFLQJ WKH WUDMHFWRU\ RI
WKH CUDE NHEXOD ZLWKLQ WKH FO9 RI KM2A. TKH EHVW-ILW
YDOXHV RI J DQG   DUH REWDLQHG E\ PLQLPL]LQJ D   IXQF-
WLRQ IRU 7 HQHUJ\ ELQV:

χ2=

7∑

i=1

(
Nsi
−NMCi

(J,α)
σNsi

)2

. ���

−1 −2 −1

SLQFH WKH ILW RI WKH VSHFWUXP LV IRUZDUG-IROGHG, WKH EL-
DVHV DQG HQHUJ\ UHVROXWLRQ LQ WKH HQHUJ\ DVVLJQPHQWV DUH
WDNHQ LQWR DFFRXQW. TKH LQIOXHQFH FRPLQJ IURP WKH DV\P-
PHWU\  LQ  HQHUJ\  UHVROXWLRQ  VKRZQ  LQ FLJ.  8  FDQ EH   QHJ-
OHFWHG.  TKH  UHVXOWLQJ  GLIIHUHQWLDO  IOX[  (TH9   FP   V )

σS)LJ. 14.      (FRORU RQOLQH) SLJQLILFDQFH PDSV FHQWHUHG RQ WKH CUDE NHEXOD DW WKUHH HQHUJ\ UDQJHV.    LV WKH VLJPD RI WKH 2-GLPHQVLRQ
GDXVVLDQ WDNHQ DFFRUGLQJ WR WKH PSF RI KM2A. TKH FRORU UHSUHVHQWV WKH VLJQLILFDQFH. S LV WKH PD[LPXP YDOXH LQ WKH PDS.

 

 

)LJ. 15.    (FRORU RQOLQH) TKH FHQWURLG RI WKH VLJQLILFDQFH PDS
DURXQG WKH CUDE NHEXOD LQ R.A. DQG DHc GLUHFWLRQV DV D IXQF-
WLRQ RI HQHUJ\. TKH GDVKHG OLQHV VKRZ FRQVWDQW YDOXHV WKDW ILW
WKH FHQWURLG IRU DOO HQHUJLHV.
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Extended Data Fig. 1 | Spectral gamma-ray energy distribution of G106.3+2.7. a, The flux data points with 1σ statistical error bars include measurements 
by Tibet AS+MD (red dots; this work), Fermi30 (blue squares), VERITAS14 (purple pentagons) and the Dominion Radio Astrophysical Observatory’s 
Synthesis Telescope2 (turquoise blue dots). The two red downward arrows above 1014 eV show 99% C.L. upper limits obtained by this work. Note that 
all the VERITAS data points are raised by a factor of 1.62 to account for the spill-over of gamma-ray signals outside their window size of 0.32∘ radius. 
The best-fit gamma-ray energy spectrum in the leptonic model is shown by the black solid curve, with the flux by the electron synchrotron radiation (the 
orange solid curve), the IC scattering of CMB photons (the green dashed curve) and the IC scattering of IR photons (the light blue dash-dotted curve). The 
gray open diamond shows the flux of PSR J2229+6114 obtained in the 2!−!10 keV range6. b, The best-fit gamma-ray energy spectrum in the hadronic model 
is shown by the turquoise blue solid curve. The lower panels show the residual Δσof the fit.
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package18, which allows us to estimate the parent particle spectrum 
to best reproduce the observed gamma-ray energy spectrum. For 
the energy distribution of the parent particles, we assume an expo-
nential cut-off power-law form of dN=dE / E!α exp !E=Ecutð Þ

I
. 

We provide the best-fit gamma-ray spectra for hadronic and lep-
tonic models (Extended Data Fig. 1) and list the best-fit param-
eters (Supplementary Table 2). In the hadronic model, we obtain 
Ecut ≈ 0.5 PeV and α ≈ 1.8. The value of α falls between that pre-
dicted in the standard diffusive shock acceleration (α = 2) and the 
asymptotic limit of the very efficient proton acceleration (α = 1.5)  
(refs. 19,20). The total energy of protons with energies >1 GeV 
(>0.5 PeV) is estimated to be ~5.0 × 1047 erg (3.0 × 1046 erg) for a tar-
get gas density of 10 cm−3. One might argue that, considering the 
estimated SNR age of 10 kyr, PeV protons escape the SNR much 
earlier than the present time in the standard theory of cosmic-ray 
acceleration. Given that Ecut ≈ 0.5 PeV and that the maximum energy 
of protons that remain inside an SNR is proportional to τ−0.5 where 
τ is the SNR age21, protons should be accelerated up to ~1.6 PeV at 
τ = 1 kyr in the case of G106.3+2.7. This suggests that the accelera-
tion of protons at G106.3+2.7 should be efficient enough21 to push 
their maximum energy up to ~1.6 PeV during the SNR free expan-
sion phase. In addition, G106.3+2.7 has a dense molecular cloud 
nearby that is indispensable for accelerated protons to produce 
TeV gamma rays via π0 production. With α ≈ 1.8, the proton energy 
spectrum does not appear softened, which implies that protons may 
not be able to escape the SNR easily owing to the suppression of the 
diffusion coefficient (Supplementary Information). Future observa-
tions of the physical parameters of G106.3+2.7 such as the magnetic 
field and the particle density could provide useful information for 
these theoretical studies on its mechanisms of particle acceleration 
and confinement.

Alternatively, the observed gamma-ray emission might result 
from protons accelerated by the SNR up to 0.1 PeV and then 
re-accelerated up to 1 PeV by the adiabatic compression of the 
Boomerang pulsar wind nebula (PWN) inside the SNR22. If the 
adiabatic compression ended at an age of 5 kyr as estimated in ref. 22,  
accelerated PeV protons need to travel a distance of 6 pc from the 
Boomerang PWN to the molecular cloud during the lapse time 
of T = 5 kyr until the present time. The diffusion coeffiicient of a 
0.5 PeV proton in the interstellar medium with a magnetic field of 
3 μG would be D ≈ 2 × 1030 cm2 s−1 (ref. 23), which gives a diffusion 
length of L ! 2

ffiffiffiffiffiffiffi
DT

p

I
 = 380 pc (ref. 24) for T = 5 kyr. As the diffusion 

length around an SNR could be shorter by a factor of 10 or more25, 
we then estimate L ≲ 38 pc. As this is much larger than 6 pc, it would 
be possible for 0.5 PeV protons to diffuse from the Boomerang 
PWN to the molecular cloud and emit TeV gamma rays through π0 
production. This scenario might not be natural, however, consid-
ering that TeV gamma-ray emissions have not been detected from 
other molecular cloud clumps around the source (Fig. 1, green con-
tours) although protons should also be able to diffuse up to them, 
and considering that the proton spectrum needs to be kept hard 
with α ≈ 1.8 after the diffusion of 6 pc for T = 5 kyr.

In the leptonic model, we obtain Ecut ≈ 190 TeV, α ≈ 2.3 and an 
SNR magnetic field strength of ~9 μG. The total energy of relativistic 
electrons with energies >10 MeV is estimated to be ~1.4 × 1047 erg. 
We estimate (Supplementary Information) that electrons need to be 
newly accelerated within 1 kyr if they originate from the SNR, and 
that electrons provided by the Boomerang PWN are not likely to 
produce the observed gamma-ray emission in view of the energy 
budget and the gamma-ray morphology. The X-ray flux for the 
small 2′-radius region at PSR J2229+6114 has been measured in the 
2−10 keV range6, whereas the X-ray flux for the extended region 
of our gamma-ray emission region with the 1σ extent of 0.24° has 
not been published yet, although X-ray data of the region observed 
by Suzaku, XMM-Newton and Chandra are publicly available 
(https://www.darts.isas.jaxa.jp/astro/suzaku/data/public_list/). We 
point out that a flux upper limit on the synchrotron spectrum at 
the X-ray band would provide important information to rule out 
the leptonic scenario for particle acceleration at the gamma-ray 
source (Supplementary Fig. 1). In a scenario presented in previous  
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Acceleration of petaelectronvolt protons in the 
Galactic Centre
HESS Collaboration*

Galactic cosmic rays reach energies of at least a few petaelectronvolts1 
(of the order of 1015 electronvolts). This implies that our Galaxy 
contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed 
models of Galactic cosmic-ray accelerators encounter difficulties 
at exactly these energies2. Dozens of Galactic accelerators capable 
of accelerating particles to energies of tens of teraelectronvolts  
(of the order of 1013 electronvolts) were inferred from recent γ-ray 
observations3. However, none of the currently known accelerators—
not even the handful of shell-type supernova remnants commonly 
believed to supply most Galactic cosmic rays—has shown the 
characteristic tracers of petaelectronvolt particles, namely, power-
law spectra of γ-rays extending without a cut-off or a spectral break 
to tens of teraelectronvolts4. Here we report deep γ-ray observations 
with arcminute angular resolution of the region surrounding the 
Galactic Centre, which show the expected tracer of the presence 
of petaelectronvolt protons within the central 10 parsecs of the 
Galaxy. We propose that the supermassive black hole Sagittarius  
A* is linked to this PeVatron. Sagittarius A* went through active 
phases in the past, as demonstrated by X-ray outbursts5 and an 
outflow from the Galactic Centre6. Although its current rate of 
particle acceleration is not sufficient to provide a substantial 
contribution to Galactic cosmic rays, Sagittarius A* could have 
plausibly been more active over the last 106–107 years, and therefore 
should be considered as a viable alternative to supernova remnants 
as a source of petaelectronvolt Galactic cosmic rays.

The large photon statistics accumulated over the last 10 years of 
observations with the High Energy Stereoscopic System (HESS), 
together with improvements in the methods of data analysis, allow for 
a deep study of the properties of the diffuse very-high-energy (VHE; 

*Lists of participants and their affiliations appear at the end of the paper.

more than 100 GeV) emission of the central molecular zone. This region 
surrounding the Galactic Centre contains predominantly molecular gas 
and extends (in projection) out to radius r ≈  250 pc at positive Galactic 
longitudes and r ≈  150 pc at negative longitudes. The map of the central 
molecular zone as seen in VHE γ -rays (Fig. 1) shows a strong (although 
not linear; see below) correlation between the brightness distribution 
of VHE γ -rays and the locations of massive gas-rich complexes. This 
points towards a hadronic origin of the diffuse emission7, where the  
γ -rays result from the interactions of relativistic protons with the ambi-
ent gas. The other important channel of production of VHE γ -rays is 
the inverse Compton (IC) scattering of electrons. However, the severe 
radiative losses suffered by multi-TeV electrons in the Galactic Centre 
region prevent them from propagating over scales comparable to the 
size of the central molecular zone, thus disfavouring a leptonic origin of 
the γ -rays (see discussion in Methods and Extended Data Figs 1 and 2).

The location and the particle injection rate history of the cosmic-ray 
accelerator(s) responsible for the relativistic protons determine the 
spatial distribution of these cosmic rays which, together with the gas 
distribution, shape the morphology of the central molecular zone 
seen in VHE γ -rays. Figure 2 shows the radial profile of the E ≥  10 TeV 
cosmic-ray energy density wCR up to r ≈  200 pc (for a Galactic Centre 
distance of 8.5 kpc), determined from the γ -ray luminosity and the 
amount of target gas (see Extended Data Tables 1 and 2). This high 
energy density in the central molecular zone is found to be an order of 
magnitude larger than that of the ‘sea’ of cosmic rays that universally 
fills the Galaxy, while the energy density of low energy (GeV) cosmic 
rays in this region has a level comparable to it8. This requires the pres-
ence of one or more accelerators of multi-TeV particles operating in 
the central molecular zone.
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Figure 1 | VHE γ-ray image of the Galactic Centre region.  The colour 
scale indicates counts per 0.02° ×  0.02° pixel. a, The black lines outline 
the regions used to calculate the cosmic-ray energy density throughout 
the central molecular zone. A section of 66° is excluded from the annuli 
(see Methods). White contour lines indicate the density distribution of 

molecular gas, as traced by its CS line emission30. Black star, location of 
Sgr A* . Inset (bottom left), simulation of a point-like source. The part of 
the image shown boxed is magnified in b. b, Zoomed view of the inner  
∼ 70 pc and the contour of the region used to extract the spectrum of the 
diffuse emission.
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If the accelerator injects particles (here we consider protons through-
out) at a continuous rate, ( )!Q Ep , the radial distribution of cosmic rays 
in the central molecular zone, in the case of diffusive propagation, is 
described9 as ( )= ( )

π ( )

!
w E r t, , Q E

D E rCR 4
p  erfc(r/rdiff), where D(E) and rdiff are  

the diffusion coefficient and radius, respectively. For timescales t 
smaller than the proton–proton interaction time (tpp ≈   
5 ×  104(n/103)−1 yr, where n is the density of the hydrogen gas in cm−3), 
the diffusion radius is ≈ ( )r D E t4diff . Thus, at distances r <  rdiff, the 
proton flux should decrease as ∼ 1/r provided that the diffusion coef-
ficient does not vary much throughout the central molecular zone. The 
measurements clearly support the wCR(r) ∝  1/r dependence over the 
entire central molecular zone region (Fig. 2) and disfavour both 
wCR(r) ∝  1/r2 and wCR(r) ∝  constant profiles (the former is expected if 
cosmic rays are advected in a wind, and the latter in the case of a single 
burst-like event of cosmic-ray injection). The 1/r profile of the cos-
mic-ray density up to 200 pc indicates a quasi-continuous injection of 
protons into the central molecular zone from a centrally located accel-
erator on a timescale ∆ t exceeding the characteristic time of diffusive 
escape of particles from the central molecular zone, that is, ∆ t ≥  tdiff ≈  
R2/6D ≈  2 ×  103(D/1030)−1 yr, where D (in cm2 s−1) is normalized to 
the characteristic value of multi-TeV cosmic rays in the Galactic disk10. 
In this regime the average injection rate of particles is found to  
be (≥ )≈ × ( / )!Q D10 TeV 4 10 10p

37 30  erg s−1. The diffusion coefficient 
itself depends on the power spectrum of the turbulent magnetic field, 
which is unknown in the central molecular zone region. This intro-
duces an uncertainty in the estimates of the injection power of relativ-
istic protons. Yet, the diffusive nature of the propagation is constrained 
by the condition R2/6D ! R/c. For a radius of the central molecular 
zone region of 200 pc, this implies D ! 3 ×  1030 cm2 s−1, and, conse-
quently, . × −! "Q 1 2 10 erg sp

38 1.
The energy spectrum of the diffuse γ -ray emission (Fig. 3) has been 

extracted from an annulus centred at Sagittarius (Sgr) A*  (see Fig. 1). 
The best fit to the data is found for a spectrum following a power law 
extending with a photon index of ∼ 2.3 to energies up to tens of TeV, 
without a cut-off or a break. This is the first time, to our knowledge, 
that such a γ -ray spectrum, arising from hadronic interactions, has 
been detected. Since these γ -rays result from the decay of neutral pions 
produced by pp interactions, the derivation of such a hard power-law 

spectrum implies that the spectrum of the parent protons should extend 
to energies close to 1 PeV. The best fit of a γ -ray spectrum from neutral 
pion decay to the HESS data is found for a proton spectrum following 
a pure power law with an index of ∼ 2.4. We note that pp interactions 
of 1 PeV protons could also be studied by the observation of emitted 
neutrinos or X-rays from the synchrotron emission of secondary elec-
trons and positrons (see Methods and Extended Data Figs 3 and 4). 
However, the measured γ -ray flux puts the expected fluxes of neutri-
nos and X-rays below or at best close to the sensitivities of the current 
instruments. Assuming a cut-off in the parent proton spectrum, the 
corresponding secondary γ -ray spectrum deviates from the HESS data 
at 68%, 90% and 95% confidence levels for cut-offs at 2.9 PeV, 0.6 PeV 
and 0.4 PeV, respectively. This is the first robust detection of a VHE 
cosmic hadronic accelerator which operates as a source of PeV particles 
(a ‘PeVatron’).

Remarkably, the Galactic Centre PeVatron appears to be located 
in the same region as the central γ -ray source HESS J1745− 290  
(refs 11–14). Unfortunately, the current data cannot provide an answer 
as to whether there is an intrinsic link between these two objects. The 
point-like source HESS J1745− 290 itself remains unidentified. Besides 
Sgr A* (ref.  15), other potential counterparts are the pulsar wind nebula  
G 359.95− 0.04 (refs 16, 17) and a spike of annihilating dark matter18. 
Moreover, it has also been suggested that this source might have a 
diffuse origin, peaking towards the direction of the Galactic Centre 
because of the higher concentration there of both gas and relativistic 
particles15. In fact, this interpretation would imply an extension of the 
spectrum of the central source to energies beyond 10 TeV, which how-
ever is at odds with the detection of a clear cut-off in the spectrum of 
HESS J1745− 290 at about 10 TeV (refs 19, 20; Fig. 3). Yet the attractive 
idea of explaining the entire γ -ray emission from the Galactic Centre by 
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Figure 2 | Spatial distribution of the cosmic-ray density versus 
projected distance from Sgr A*.  The vertical and horizontal error bars 
show the 1σ statistical plus systematic errors and the bin size, respectively. 
Fits to the data of a 1/r (red line, χ2/d.o.f. =  11.8/9), a 1/r2 (blue line, χ2/
d.o.f. =  73.2/9) and a homogeneous (black line, χ2/d.o.f. =  61.2/9) cosmic-
ray density radial profile integrated along the line of sight are shown. The 
best fit of a 1/rα profile to the data is found for α =  1.10 ±  0.12 (1σ). The 
1/r radial profile is clearly preferred for the HESS data.
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Figure 3 | VHE γ-ray spectra of the diffuse emission and HESS  
J1745−290.  The y axis shows fluxes multiplied by a factor E2, where E is the 
energy on the x axis, in units of TeV cm−2 s−1. The vertical and horizontal 
error bars show the 1σ statistical error and the bin size, respectively. Arrows 
represent 2σ flux upper limits. The 1σ confidence bands of the best-fit 
spectra of the diffuse and HESS J1745−290 are shown in red and blue 
shaded areas, respectively. Spectral parameters are given in Methods. The 
red lines show the numerical computations assuming that γ -rays result from 
the decay of neutral pions produced by proton–proton interactions. The 
fluxes of the diffuse emission spectrum and models are multiplied by 10 to 
visually separate them from the HESS J1745−290 spectrum.
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Mysterious object!?
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1. Array coverage 82,800m2

= 401 x 1m2 plastic scintillators

2. Underground water Cherenkov 
muon detector (MD)  3700m2

Soil over 2m (~16X0) 
= 58m2 with 20”f PMT  x 64 cells

2m
15m

ü Cosmic-ray BG rejection power >99.9% @100TeV.
ü Angular resolution ~0.2° @100TeV,   Energy resolution ~20%@100TeV
ü 100% duty cycle, FOV !zen<40°(well studied), !zen<60°(in study) 



ALPACA staging

300 m

Half ALPACA AS and MD

Po
w

er
 L

in
e

Was
tew

ate
r

Ver.2.0

W
at

er

M. Ohnishi

2

2

1 m   AS Detector  x  (97+108)  (82,800 m  )

58 m   Muon Detector  x  (16+48)  (3,700 m  )

2

2

300 m

Full ALPACA AS and MD

Po
w

er
 L

in
e

Was
tew

ate
r

W
at

er

2

258 m   Muon Detector  x  (16+48)  (3,700 m  )2

1 m   AS Detector  x  (97+304)  (82,800 m  )

Ver.1.0

2

M. Ohnishi

21m

7

15m

ALPACA (High Density) ALPACA (half) in 2022

ALPAQUITA in 2021
97 SDs + 1 MD

200 SDs + 4 MDs



ALPAQUITA
(little ALPACA)
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• Prototype array of 25% ALPACA area coverage
• 97 surface detectors
• 1 MD

• Targets
• Start operation in 2021
• Infrastructure establishment
• A few bright >100TeV sources
• CR anisotropy
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ALPAQUITA & infrastructure
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• Central electronics hut
• Perimeters
• Powerline（branch from the substation-Chacaltaya observatory line）
• Cable drains
• Lightning rods
• Long distance Wifi
• Water system
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Foto 1.   Ubicación de la línea geofísica. 
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Sensitivities of ALPAQUITA, ALPACA (half) 
and ALPACA (HD) 
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S. Kato ID:857 Y. Yokoe ID:947

• ALPAQUITA can detect some sources in 1 year
• ALPACA (half) can touch the Galactic center flux in 1 year  

ALPAQUITA

ALPACA (h
alf

)

Gal. center



Beyond PeV ‒ Mega (m2) ALPACA
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30 m spacing array
Area 1,011,600 m2

# of det. 1185

15 m spacing array
Area 82,800 m2

# of det. 313 
(Additional to 15 m spacing)

# of total det. 1185 + 313 = 1498

MD Array
900 m2 (16 Cells) x 60 = 54,000 m2

# of cells 960
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Beyond PeV ‒ Mega (m2) ALPACA
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30 m spacing array
Area 1,011,600 m2

# of det. 1185

15 m spacing array
Area 82,800 m2

# of det. 313 
(Additional to 15 m spacing)
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Where is the highest energy accelerator in our Galaxy?



Summary
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ü Sub-PeV gamma-ray astronomy is crucial to identify the PeV

particle accelerators, PeVatrons

• Recent successes by Tibet AS!, HAWC and LHAASO open a 
sub-PeV window in the northern sky

• New experiment in the southern hemisphere is desired
• Rich targets in south thanks to HESS up to 10TeV

ü ALPACA explores southern sky in Bolivia first time with the 

technic established by Tibet AS!
ü ALPAQUITA will start operation in 2021

ü ALPACA (half) will start operation in 2022, and eventually 

upgraded to ALPACA (HD)

ü Mega ALPACA is discussed as a future plan to explore PeV

energy range  

S. Kato ID:857

Y. Yokoe ID:947
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• What is this contribution about?
Status of a new air shower array project in Bolivia, ALPACA, is presented. 

• Why is it relevant / interesting?
Sub-PeV gamma-ray astronomy is important to know the origin of the galactic cosmic rays.  Recent 
success in the Northern hemisphere naturally calls our interest to the observations in the Southern 
hemisphere. 

• What have we done?
To realize ALPACA, some construction stages are defined and their sensitivities are studied.  
Infrastructure is ready and the prototype array ALPAQUITA is under construction.

• What is the result?
ALPAQUITA will start operation in 2021 followed by an extension to ALPACA (half) in 2022.   
Eventual extension to ALPACA (HD) and future Mega ALPACA plan are also being studied.

Current status of ALPACA 
for exploring sub-PeV gamma-ray sky in Bolivia

T. Sako (ICRR, University of Tokyo) for the ALPACA Collaboration

One page executive summary

ICRC2021 (Berlin, online) ID777


