

Deep Learning Transient Detection with VERITAS

Konstantin Pfrang^{a,*} on behalf of the VERITAS Collaboration

(a complete list of authors can be found at the end of the proceedings)

^a Deutsches Elektronen Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany E-mail: konstantin.pfrang@desy.de

What is this contribution about?

This contribution presents the implementation of a data-driven deep-learning based transient detection method for VERITAS.

Why is it relevant / interesting?

Imaging Air Cherenkov telescopes provide insights to very-high-energy transient signals such as evaporation of primordial black holes, gamma-ray bursts or flaring blazars. The identification of such events requires a robust blind search method.

What have we done?

We developed a pipeline to generate the required inputs to the deep-learning method. We investigated influences to the data to determine auxiliary parameters and meta bins to obtain a robust performance under different observing conditions. We illustrate out method on an historic flare of the blazar BL Lac in the scenario of a possible follow-up observation.

What is the result

Overall the results are compatible with the significance achieved by traditional detection methods, considering a single reflected background region. The results for short timescales are promising, which can be critical for the fast detection of transient signals.

37th International Cosmic Ray Conference (ICRC 2021
July 12th – 23rd, 2021
Online – Berlin, Germany