

Cosmic Ray acceleration in oblique astrophysical shocks using combined PIC and PIC-MHD simulations

Allard Jan van Marle

Artem Bohdan, Alexandre Marcowith, Martin Pohl, Paul Morris

Acceleration of cosmic particles

- We know astrophysical shocks accelerate particles through Fermi 1 or diffusive shock acceleration (DSA). We observe them as cosmic rays.
- **This process is self-induced and self**sustaining:
	- The presence of non-thermal particles triggers. instabilities in the upstream magnetic field.
	- These instabilities then reflect particles across the shock, accelerating them further
	- The wavelength of the instabilities scales with the current, so the instabilities grow to match the energy of the particles
- What do we need to model this process computationally?
	- Astrophyiscal shocks are large-scale structures (AU-Mpc)
	- Particle acceleration involves micro-physics

X-ray: Nasa/CXC/Rutgers/K. Eriksen et al.; Optical: DSS

courtesy of Dr. Mark Pulupa's space physics illustration

Magnetohydrodynamics vs. Particle-in-cell

- Magnetohydrodynamics (mhd)
	- **Based on statistical averages** (mass-, momentum- & energydensity)
	- Good at large scale simulations
	- Computationally efficient
	- Cannot simulate micro-physics
- **•** Particle-In-Cell (PIC)
	- **Based on individual particles**
	- Can simulate micro-physics
	- Can simulate non-thermal plasma
	- Computationally expensive on large scales
	- Numerical noise (Cherenkov waves)

We need aspects of both

PIC-MHD can accomplish this by treating the thermal plasma as a fluid and the non-thermal gas as particles

PIC-MHD

Move particles Using Borispusher and the B and E fields

 \bullet

Update MHD quantities through conservation equations, including charge and current from particles

 \bullet

 \bullet

 \bullet

 \bullet

Interpolate from particles to determine charge and current in cell centres

Constrained transport ensures div.B=0 MHD cell-centres function as PIC cellcorners

The influence of shock-obliquity

- Hybrid-PIC simulations (*Caprioli & Spitkovsky 2014, Haggerty & Caprioli 2019*) show NO B-field amplification or particle acceleration should occur at angles $>$ ~60 $^{\circ}$.
- According to PIC-MHD simulations (van Marle et al. 2018) both happen, owing to long-wavelength instability that could not be captured by the hybrid-PIC simulations
- **E** However,
	- the PIC-MHD simulation does not model internal structure of shocks
	- It relies on ad-hoc description of injection rate of non-thermal particles at shock front
	- van Marle et al. 2018 used injection fraction identical to that of parallel shock
- To improve the PIC-MHD results we need a 2-stage approach: use PIC to determine the injection fraction, then use PIC-MHD to follow the long-term evolution of the gas.

PIC results

- Assumption:
	- U_{inj} > U_{B} to trigger instabilities
- 2-D simulations
- $\Theta_B = 45 70$
- Injection rate decrease rapidly
	- particles require higher velocity to move upstream
- At $\Theta_B = 60$, $n_{\text{ini}} \approx 5 \times 10^{-5}$
	- (reflected into upstream medium)

PIC-MHD results

- PIC-MHD simulations
	- Large-scale 2-D box
	- Inject at n_{ini} =1x10⁻⁴ (isotropically)
	- $\theta_B = 60^\circ$
- Constant gas parameters except for variation in M_A
- No significant DSA at $M_A=20$
- Start of DSA at $M_A = 50$
- Efficiency increases with M_A

The characteristics of the plasma

- **Plasma characteristics for the** M_A =300 simulation:
	- Magnetic field amplification is low
	- Distortion of the upstream magnetic field is very small
- **E** Therefore:
	- a large simulation box is required or particles will escape upstream before they can be reflected back toward the shock!

Conclusions

- **The injection rate of non-thermal particles decreases** rapidly for shocks with obliquity of 50+ degrees
- **Particles can only trigger the streaming instability if the** energy of the upstream particle flow exceeds the local magnetic field energy
- **E Therefore, only oblique shocks with a high Alfvénic Mach** number are likely capable of triggering DSA .
- At 60 degrees, we need M_A ≥ 50. At 70 degrees, we would need $M_A \approx 1000$

