Cosmic Ray Elemental Spectra and Atmospheric Neutrino Fluxes

Rachel Scrandis^a, Deven Bowman^a, and Eun-Suk Seo^{a,b}

ICRC 2021

^aDept. of Physics, University of Maryland, College Park, MD, USA ^bInst. for Phys. Sci. and Tech., University of Maryland, College Park, MD, USA

Background: Atmospheric Neutrinos

- Produced when cosmic rays interact with Earth's atmosphere
- Atmospheric neutrinos dominate spectra until ~100 TeV, above which astrophysical signal begins to appear

Kajita, Atmospheric neutrinos and discovery of neutrino oscillations, 2010

Rachel Scrandis

Background: Cosmic Rays

- Generally protons + heavier elements
- All-particle presents a 'knee' around 3 PeV
- It is expected to arise from change in underlying population
- Knee energies in cosmic rays translate to transitional energy regime in neutrinos

Direct Measurement Data

- Extends from ~0.1 GeV/n to 10⁶ GeV/n
- All elements present spectral hardening ~200 GV
- Assume an acceleration population w/ rigidity dependent cutoff (Peters, Il Nuovo Cim. 22, 800-819, 1961)

4 Population Model

•Each element will have the same rigidity cut off (Rcut), but different coefficients (a) and indices (γ) (Gaisser, Stanev, & Tilav. Frontiers of Physics. 8, 6, 2013)

•Element Grouping (M. Aguilar et al., Phys. Rev. Lett., 126, 4, 2021):

• <u>Proton Group:</u> p; <u>Helium Group:</u> He, C, O, Fe; <u>Neon Group:</u> Ne, Mg, Si

4 Population Model

$$F_{i} = a_{i,0}E^{\gamma_{i,0}} * \exp\left(\frac{-E}{Z_{i}R_{cut0}}\right) + a_{i,1}E^{\gamma_{i,1}} * \exp\left(\frac{-E}{Z_{i}R_{cut1}}\right) + a_{i,2}E^{\gamma_{i,2}} * \exp\left(\frac{-E}{Z_{i}R_{cut2}}\right) + a_{i,3}E^{\gamma_{i,3}} * \exp\left(\frac{-E}{Z_{i}R_{cut3}}\right)$$
Population 0 Population 1 Population 2 Population 3

Case / Model	Pop 0 RCutoff	Pop 1 RCutoff	Pop 2 RCutoff	Pop 3 RCutoff	Pop 4 RCutoff
Gaisser et al 'H3a'	-	4 PV	30 PV	2 EV	60 EV
Case I	400 GV	50 TV	4 PV	500 PV	-
Case II	400 GV	250 TV	4 PV	500 PV	-
Case III	400 GV	800 TV	4 PV	500 PV	-

(Gaisser, Stanev, & Tilav. Frontiers of Physics. 8, 6, 2013)

Fitting Results: Case II (250 TV)

Atmospheric Neutrino Conversion

- •Utilizing MCEq (A. Fedynitch et al, EPJ Web Conf. 99, 2015)
- •MSIS00 atmospheric profile chosen (J.M. Picone et al, J. Geophys. Res. 107, 2002)

•SIBYLL2.3c (F. Riehn et al, PoS ICRC. 301, 2017) and QGSJet-II-04 (Sergey Ostapchenko, Phys.Rev. D83, 2011) interaction models chosen

•Simulation location was chosen to be South Pole

•Flux is averaged over zenith angle and season

Results: All Particle and Atm. Neutrino Fluxes

Results: Proton Contribution

Results: Minor Tension

