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Abstract

We explore analytical techniques for modeling the nonlinear cosmic ray transport in various
astrophysical environments which is of significant current research interest. While nonlinearity is
most often described by coupled equations for the dynamics of the thermal plasma and the cosmic
ray transport or for the transport of the plasma waves and the cosmic rays, we study the case of a
single but nonlinear advection-diffusion equation. The latter can be approximately solved analytically
or semi-analytically, with the advantage that these solutions are easy to use and, thus, can facilitate
a quantitative comparison to data. In the present study we extend our previous work on nonlinear
diffusion in a threefold manner. First, instead of employing an integral method to the case of pure
nonlinear diffusion, we apply an expansion technique to the advection-diffusion equation. We use
the technique systematically to analyze the effect of nonlinear diffusion for the cases of constant
advection combined with time-varying source functions. Second, we present a alternate formulation
for the used nonlinear diffusion coefficient and succesfully apply our expansion technique as well.
Third, we extend the study from the one-dimensional, Cartesian geometry to the radially symmetric
case, which allows us to treat more accurately the nonlinear diffusion problems on larger scales
away from the source.

Basic theory

We begin with the diffusive part of the linear transport equation:
∂f
∂t

= ∇ [D (r , t)∇f ] (1)

In linear theories the diffusion coefficient D is only depending on x and t . As shown by e.g. Ptuskin
et al.(2008) the diffusion coefficient can also depend on the gradient of the distribution function as
well, so that we can take it as:

D(f ) = D0

(
f0
r0

)ν
|∇f |−ν (2)

The parameter ν represent the nonlinear coefficient, that has been identified for several models, for
example as ν = 1

2 for moving magnetic mirrors, or ν = 2
3 for a Kolmogorov-type energy dissipation of

the induced waves in the background plasma. Using this formulation, a monoenergetic 1-D transport
equation in a Cartesian geometry would read as:

∂f
∂t

+ V
∂f
∂x

=
∂

∂x

(
D0

∣∣∣∣∂f
∂x

∣∣∣∣−ν ∂f
∂x

)
+ Q0 (3)

It is not possible to derive a solution for this equation, using an arbitrary nonlinear coefficient ν. So
our goal is to develop a method to approximate solutions. For small ν one can expand f in orders of
ν, so it reads as:

f = f0 + νf1 + ν2f2 + ... (4)
Inserting this into the transport equation and ordering the resulting expression in orders of ν we get
a set of equations:

Lcartf0 = Q0

Lcartf1 = Q1

...

Lcartfn = Qn

Lcart =
∂

∂t
+ V

∂

∂x
− D0

∂2

∂x2

Q1 = −D0 (1 + ln |f0,x|) f0,xx

Q2 = −D0

(
f1,x

f0,x
−

1
2

ln2 (|f0,x|)− ln (|f0,x|)
)

f0,xx

− D0 (1 + ln (|f0,x|)) f1,xxetc. (5)

This formula can be combined with the fundamental solution Γcart of the operator Lcart, so we only
have to calculate the convolutions of said fundamental equation and the sources on the right hand
side.

Γcart =
1√

4πD0t
exp

[
−

(x − Vt)2

4D0t

]
fn (x, t) =

∫
Γcart (x − x0, t − t0) Qn (x0, t0) dt0dx0 (6)

This takes much less computational power, than solving the transport equation directly, while
producing decent results, even after only two orders of approximation.

Results for constant advection in a Cartesian geometry

Numerical and semi-analytical results up to the second order of approximation for a source
Q0 = S0δ (x)

(
t − t2

)
for velocity V = 4, sourceparameter S0 = 1 and ν = 0.25:
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Variations and different geometries

The nonlinearity introduced in the previous section has the disadvantage of diverging for the case
fx → 0. To avoid this, we can formulate the diffusion in a more consistent fashion D = D̃

|fx |ν+λ0
. In

this case D̃ and λ0 are constants, who determine the limiting cases for ν → 0 and fx → 0. For this
scenario we derive the fundamental solution Γcons and sources:

Lcons =
∂

∂t
+ V

∂

∂x
−

D̃
1 + λ0

∂2

∂x2

Γcons =
1√

4π D̃
1+λ0

t
exp

−(x − Vt)2

4 D̃
1+λ0

t


Q1 = −D̃

1 + ln
∣∣f0,x∣∣

(1 + λ0)2 f0,xx , (7)

Q2 = −D̃
ln
∣∣f0,x∣∣ + 1

(1 + λ0)2 f1,xx + D̃
ln2 ∣∣f0,x∣∣ + 2 ln

∣∣f0,x∣∣
(1 + λ0)3 f0,xx

− D̃
1
2 ln2 ∣∣f0,x∣∣ + ln

∣∣f0,x∣∣
(1 + λ0)2 f0,xx − D̃

f1,x
(1 + λ0)2 f0,x

f0,xx . (8)

Another possible alteration to the basic formula in the first section is to choose a non Cartesian
geometry. For many astrophysical applications the spherical geometry is the most usable geometry.
The transport equation then reads as:

∂f
∂t

=
1
r2
∂

∂r

(
r2D (f )

∂f
∂r

)
+ Q0 (9)

Treating this equation in the same way as before, we get a set of equations and a linear operator
Lrad, that can be solved semi analytically.

Lrad =
∂

∂t
− D0

1
r2

∂

∂r

(
r2 ∂

∂r

)
Lradfn = Qn

Q1 = − (1 + ln (|f0,r|)) f0,rr −
1
r

ln (|f0,r|) f0,r

Q2 = −
2
r

ln (|f0,r|) f1,r −
2
r

f1,r − ln (|f0,r|) f1,rr −
1

f0,r
f1,rf0,rr

− f1,rr + ln (|f0,r|) f0,rr +
ln2 (|f0,r|)

2
f0,rr + ln2 |f0,r|

f0,r

r
(10)

For solving this equations we use a modified version of the Greens formula of Webb and
Gleeson(1977), that reads:

f (r , t) =
1
r2

∫ t

0
dt ′
∫ ∞

0
dr ′r ′2Q

(
r ′, t ′

)
G
(
r ′, r , t − t ′

)
G
(
r ′, r , t − t ′

)
=

r
r ′

2
√
π (t − t ′)

×

exp

−(r ′ − r
)2

4 (t − t ′)

− exp

−(r ′ + r
)2

4 (t − t ′)

 (11)

Results for modified scenarios
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Solution for a consistent diffusion coefficient up to the second order, for a pulse like source. The
parameters are D0 = 1 and D̃ = 103 with V = 4 for x = 0 and ν = 1

4(left), x = 1 and ν = 1
4(right).
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Solution for a spherical geometry up to the second order, for a pulse like source. The nonlinearity
parameter was chosen to be ν = 1

4 with the source strength S chosen as S0 = 4. The plotting times
are t = 1 (left) and t = 2 (right).

Discussion and Outlook

We derived a seminanalytical formula to derive solutions to a distinct form of nonlinear diffusion
advection equations. We presented a selected number of results of scenarios of different geometries
and implementations of the diffusion coefficient, comparing them to much more time intensive
numerical results. We can see, that for small nonlinear parameters ν the formula gives decent
results in just two approximation steps. The quality of the approximations is dependent on the
paramter ν. The results obtained for the monoenergetic transport equation can be used as the
groundwork for shock acceleration and non-constant velocity profiles. For more examples and
scenarios you can take a look at Walter et al.(2020, Phys.Pl.27,id.082901).
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