

Looking for long-range correlations among the EEE telescopes

> Paola La Rocca (for the EEE Collaboration) University of Catania and INFN Sect. of Catania

The Extreme Energy Events (EEE) experiment

Web site: eee.centrofermi.it

- Network of telescopes based on Multi-gap Resistive Plate Chambers (MRPC)
- Main goal: build an extensive sparse array of detectors for the study of secondary CR
- Telescopes installed in Italian high schools, INFN/Centro Fermi and CERN
- Total: ~ 60 telescopes + ~ 50 high schools on the waiting list

Paola La Rocca (for the EEE Collaboration)

The EEE telescopes

Telescope: 3 MRPCs (~ 160 x 80 cm²)

- Built by students at CERN
- Reasonable cost
- Long term operation required
- High detection efficiency
- Reconstruction of muon orientation
- Good time resolution (TOF measurements)
- GPS for the synchronization between telescopes

The EEE telescopes

Paola La Rocca (for the EEE Collaboration)

The EEE MRPCS

Performance of the chambers:

- Average time resolution ~ 240 ps
- Longitudinal spatial resolution ~ 1.5 cm
- Transverse spatial resolution ~ 1 cm
- Average efficiency of the chambers > 90 %

Specifications:

- 6 gas gaps (spaced by 300 μm)
- $C_2H_2F_4(98\%)$ and $SF_6(2\%)$ continuously fluxed (2l/h)
- 24 readout copper strips laid out on both sides of the stack of glass plates
- Operating HV \pm 10 kV

Paola La Rocca (for the EEE Collaboration)

Data taking and upgrade

The EEE network is the largest and longliving MRPC-based telescopes array

- ~ 17 years of operation
- About 100 billion events collected
- In 2020-21 slowdown due to COVID
- The network grown up by a factor ~ 8 in terms of number of telescopes w.r.t. 2007

Upgrade program started in 2017

- Built 50 additional chambers with new gas gaps (250 µm) and lower operating voltage
- New eco-friendly gas mixtures and reduced gas flow tested
- New trigger & GPS board

What can be done employing:

- Single telescopes
 - Measure of the local cosmic ray flux and its space weather-correlated features
 - Anisotropies in the muon angular distribution
 - Phenomena related with the upward-going particle flux

What can be done employing:

- Single telescopes
 - Measure of the local cosmic ray flux and its space weather-correlated features
 - Anisotropies in the muon angular distribution
 - Phenomena related with the upward-going particle flux
- 2 or more telescopes in the same metropolitan area
 - Detection of extensive air showers

Physics program

ICRC 2021, 12-23 July 2021

What can be done employing:

- Single telescopes
 - Measure of the local cosmic ray flux and its space weather-correlated features
 - Anisotropies in the muon angular distribution
 - Phenomena related with the upward-going particle flux
- 2 or more telescopes in the same metropolitan area
 - Detection of extensive air showers
- Far telescopes (distance > EAS extension)
 - Coincidence events involving a large number telescopes
 - Long-range time correlation between far telescopes

Paola La Rocca (for the EEE Collaboration)

Physics program

What can be done employing:

- Single telescopes
 - Measure of the local cosmic ray flux and its space weather-correlated features
 - Anisotropies in the muon angular distribution
 - Phenomena related with the upward-going particle flux
- 2 or more telescopes in the same metropolitan area
 - \circ $\,$ Detection of extensive air showers
- Far telescopes (distance > EAS extension)
 - Coincidence events involving a large number telescopes
 - Long-range time correlation between far telescopes

Paola La Rocca (for the EEE Collaboration)

Long-range correlations between EASS

Mechanisms which are able to explain the existence of correlated EAS at large distances:

- Two primary cosmics, originating from the same source
- Single primary interacting with the interstellar medium and/or the radiation field and producing two intermediate products

Leading example: Gerasimova-Zatsepin (GZ) effect, i.e. photodisintegration of primary cosmic rays in the solar field

Paola La Rocca (for the EEE Collaboration)

SOURCE

INTERACTION

Long-range correlations between EASS

Distribution of the separation distance between all possible pairs of EEE telescopes

Distances between telescopes ranges from 15 m up to 1200 km

Paola La Rocca (for the EEE Collaboration)

Analysis strategy

Challenging analysis:

- Extremely rare phenomenon
- Huge statistics is necessary
- Negligible background (spurious coincidences) is needed
- \rightarrow Need of a pure sample of EAS events
- Evaluated several strategies
- Look for time correlations between multi-track events in far telescopes

Multi-track events correspond to a few percent of the collected events

Spurious coincidences between 2 telescopes (each detecting 3 tracks) in 1 ms:

 $R_{spurious}$ (3 tracks) ~ 2 x 0.02 x 0.02 x 10⁻³ = 8 x 10⁻⁷ Hz

Paola La Rocca (for the EEE Collaboration)

Data set and quality cuts

Data set:

- Full available statistics: 2015-2020
- All EEE telescopes (no clusters)

Info available:

- Telescope codes
- Event time
- Direction, position and χ^2 of individual tracks
- Sum of the scalar products between each track and the seed track (measure of the alignment between tracks in the same telescope)

Preselection cuts:

- χ2 < 10
- Scalar product (track seed track) > 0.8
- Distance between telescopes > 5 km

Paola La Rocca (for the EEE Collaboration)

Preliminary results

The number of coincidences between all pairs of EEE telescopes was studied as a function of:

- coincidence time window (down to $\pm 10^{-5}$ s)
- cuts on sites distance, no. of tracks, $\chi 2$, parallelism of the tracks in each telescope

Background due to spurious coincidences: no. of coincidences in \pm 1 s scaled by a factor equal to the coincidence time window

Events excess observed for: $\Delta T \sim 10^{-5} \div 10^{-4} s$ no. of tracks > 3

Paola La Rocca (for the EEE Collaboration)

Characteristics of the candidate events

Time occurrence and site distance distributions for candidate events look almost uniform

Paola La Rocca (for the EEE Collaboration)

ICRC 2021, 12-23 July 2021

Extreme Enerav

Characteristics of the candidate events

- Average direction extracted from tracks in each telescope
- Evaluated the relative angle between the average directions reconstructed in the 2 telescopes
- Check for parallelism (relative angle ~ 0)

Candidate events seem to be correlated in time but not in orientation

Paola La Rocca (for the EEE Collaboration)

Conclusions and outlook

- Network successfully operating for 17 years with excellent performance
- Most of the data collected analysed and many results already published

The number of telescopes, the network extension and the statistics allows to perform the search of long-range time correlations between EASs

- Different analysis approaches adopted (Eur. Phys. J. Plus 133 (2018) 34)
- First hint of detection of time correlated EASs!
- Next steps: optimization of the cuts, deep investigation of the characteristics of the candidate events

ONLINE ICRC 2021

Paola La Rocca (for the EEE Collaboration)

Paola La Rocca (for the EEE Collaboration)

Paola La Rocca (for the EEE Collaboration)

Spatial resolution of EEE chambers

JINST 13(2018) P08026, arXiv:1805.04177v1

Paola La Rocca (for the EEE Collaboration)

Time resolution of EEE chambers

JINST 13(2018) P08026, arXiv:1805.04177v1

Paola La Rocca (for the EEE Collaboration)

Efficiency of EEE chambers

JINST 13(2018) P08026, arXiv:1805.04177v1

ICRC 2021, 12-23 July 2021

24

Test of eco-friendly gas mixtures

Most promising configurations: R1234ze(50%) + CO₂ (50%) R1234ze(99%) + SF₆(1%) 0.9 R1234ze 50% + CO, 50% 0.8 efficiency/streamer fraction 0.7R1234ze 99% + SF₆ 1% 0.6EEE nominal (R134a 98% + SF, 2%) 0.2 0.1 22 10 12 $_{\rm HV_{eff}}^{16}(\rm kV)$ 18 20 24 14

Paola La Rocca (for the EEE Collaboration)

Outreach activities

- The EEE telescopes are installed in Italian high schools
- High school students and teachers have built their own telescope at CERN and take care of the data taking
- Introducing high-school students and teachers to high energy physics
- Many activities organized or coordinated by Centro Fermi

Paola La Rocca (for the EEE Collaboration)

Forbush decrease

- Probably related to solar flares and the associated geomagnetic disturbances
- Characterized by a rapid (a few hours) intensity reduction, followed by a slow recovery in a few days time range

27

• Usually measured by neutron monitors

Physics results

Upward going particles

Paola La Rocca (for the EEE Collaboration)

Physics results

EAS detection

Paola La Rocca (for the EEE Collaboration)

ICRC 2021, 12-23 July 2021

Extreme

ce inside Schools

Energy Events

Gerasimova Zatsepin (GZ) effect

The number of the GZ event/year depends on:

- Primaries mass and energy
- Solar flux
- Photo-disintegration probability
- Solar magnetic field
- Detection array acceptance

Several numerical approaches:

Zatsepin, 1950; Gerasimova and Zatsepin, 1960; MedinaTanco and Watson, 1999; Epele et al., 1999; Fujiwara et al., 2006; Lafebre et ´al., 2008

→ Few GZ events expected per year

Observation of few candidates reported by the LAAS collaboration

$R_{spurious} \sim 2 \times 0.04 \times 0.001 \times 10^{-3} = 8 \times 10^{-8}$ Hz (typical values)

- Analyzed coincidences between the 45 pairs of the 10 EEE cluster sites hosting at least two telescopes
- 3968 days of time exposure
- 96 observed events against 77.8 estimated background
- 5 candidate events with a p-value < 0.05

			2				Tel cluster in town A
Event	EEE pairs	Distance (km)	$ t_1 - t_2 $ (µs)	$artheta_{ m rel}$ (deg)	Expected events	p-value	
(A)	BOLO-CAGL	614	86	27.1	0.0069 ± 0.0002	0.007	
(B)	BOLO-LAQU	290	740	9.1	0.014 ± 0.001	0.014	
(C)	CATA-TORI	1040	88	9.2	0.0265 ± 0.0005	0.026	
(D)	GROS-TORI	377	297	14.4	0.032 ± 0.001	0.031	
(E)	CERN-CATA	1200	248	9.3	0.049 ± 0.001	0.048	Eur Phys. J. Plus (2018) 133: 34
							2011 11,51 51 1105 (2010) 155. 54

Tel. cluster in town B

Multi-track events (p-value)

p-value: how likely it is that data could have occurred under the null hypothesis

Paola La Rocca (for the EEE Collaboration)

Combined analysis of multi-telescope events

Search for anomalous coincidence events involving a large number of EEE telescopes within ms time interval

- No specific physical mechanism already known able to explain the existence of multi-particle correlations over a huge area
- Underlying idea: Search for possible unexpected events
 Strategy:
- Consider all possible correlations between 2, 3, ... N among N telescopes working and look for events outside the expected spurious rate
- Compare results to expected spurious rate between N telescopes (not trivial)
- Integrate over long data taking periods (> months)

Paola La Rocca (for the EEE Collaboration)

Combined analysis of multi-telescope events

- Extreme Energy Events Science inside Schools
- A nearly complete scan of all available statistics from RUN 5 (October 2018-June 2019, 244 days) carried out
- Extraction of the raw multiplicity spectrum (number of coincident events as a function of the number of telescopes)

- Highest multiplicity events observed: 5 events
 with 12 telescopes
- Roughly a factor 10 decrease in the yield for every additional telescope

Paola La Rocca (for the EEE Collaboration)

Combined analysis of multi-telescope events

Comparison to the expected spurious rate

A reasonable agreement observed between raw data and spurious expected trend over 9 orders of magnitude.

An upper limit on the number of such events may be established.

Paola La Rocca (for the EEE Collaboration)

ICRC 2021, 12-23 July 2021

Extreme Enerav