Preliminary results 0000 Summar O

Cosmic ray energy spectrum and composition measurements from the GRAPES-3 experiment: Latest results

Fahim Varsi

Indian Institute of Technology, Kanpur

On behalf of GRAPES-3 collaboration

PoS(ICRC2021)388 37th International Cosmic Ray Conference (ICRC 2021), Online, Berlin, Germany

Selection quality cuts and data summary

Analysis

Preliminary results

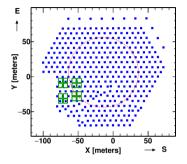
Summar O

Table of contents

Introduction to GRAPES-3 experiment

Selection quality cuts and data summary

Analysis


Preliminary results

Summary

Preliminary results

Summar O

GRAPES-3 experiment

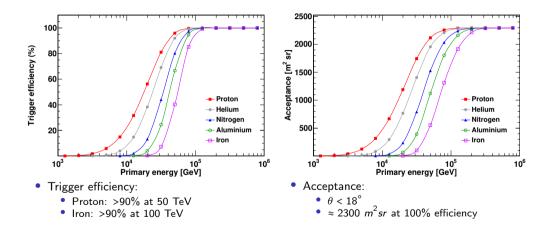
- 400 plastic scintillation detectors (1 m^2 each) cover an area of 25,000 m^2 .
- Large tracking muon telescope of area 560 m^2 .
- Fiducial area = 7850 m^2 .
- Fraction of detector area covered is 2%.
- Energy range: 1 TeV 10 PeV.

Location:

- Ooty, south India
- 11.4° N, 76.7° E
- 2200 m a.s.l.

F. Varsi (GRAPES-3 collaboration)

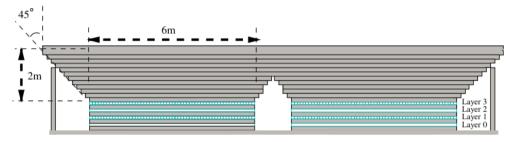
MC simulations, Experimental data and Selection quality cuts

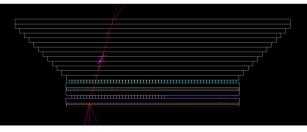

- MC simulation data used for analysis:
 - CORSIKA v7.69
 - QGSJET-II-04/FLUKA as high/low-energy hadronic interaction model.
 - H, He, N, Al and Fe
 - E = 1 TeV to 10 PeV
 - $E^{-2.5}$ spectral slope
 - $\theta = 0^\circ$ to 45°
 - 1.2×10^8 showers for each element
- Data used for analysis:
 - 32 months (1 January 2014 to 31 August 2016)
 - Live time ≈ 926 days
 - Number of showers after quality cuts: 3.2×10^7 from 2.5×10^9 .

- Selection quality cuts:
 - Successful arrival direction reconstruction
 - Successful shower parameters (core, shower size and age) reconstruction
 - Reconstructed cores restricted within the fiducial area.
 - $0.2 < age parameter (s) \le 1.8$.
 - $\theta < 18^{\circ}$.
 - Shower size $(N_e) > 10^4$ (trigger efficiency > 90%).

Selection	quality	cuts	and	data	summary
0					

Summar O


Trigger efficiency and Acceptance

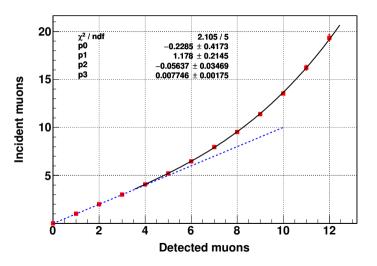

Preliminary results

Summar O

GRAPES-3 muon telescope

- 3712 PRCs
- 16 Modules
- 4 orthogonal layers of PRCs
- Sec(θ) GeV.

F. Varsi (GRAPES-3 collaboration)


composition and energy spectrum; ICRC 2021, Online, Berlin, Germany

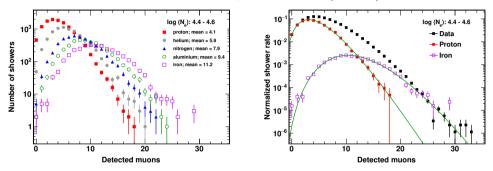
Selection	quality	cuts	and	data	summary	
0						

Analysis 00●00 Preliminary results

Summar O

Correction to saturation of muon module

Introduction to GRAPES-3 experiment
O


Selection quality cuts and data summary

Analysis

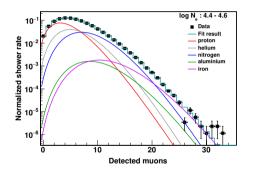
reliminary results

Summar

Muon Multiplicity distributions (MMDs)

• MMDs fitted with negative binomial distribution (NBD).

$$NBD(x; r, m) = \frac{\Gamma(x+r)}{\Gamma(x+1)\Gamma(r)} \left(\frac{r}{r+m}\right)^r \left(\frac{m}{r+m}\right)^x \tag{1}$$


• where m is the mean value and r is a measure of the standard deviation of the MMD.

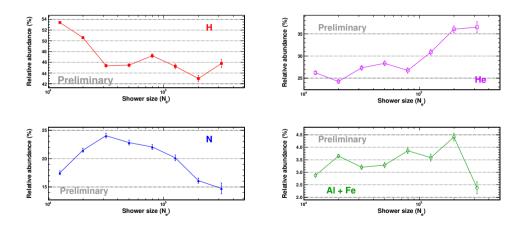
• The muon multiplicity distribution (MMD) is sensitive to the composition of the PCRs.

F. Varsi (GRAPES-3 collaboration)

composition and energy spectrum; ICRC 2021, Online, Berlin, Germany

Extracting composition

- Composition Al/Fe = 0.8.
- Relative abundance of each nuclei is measured by fitting normalized MMD of each simulated nuclei with observed MMD by minimizing χ^2 (using TMinuit).

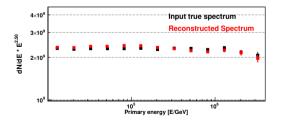

$$\chi^{2} = \sum_{i} \frac{\left(d_{i} - \sum_{j} a_{j} n_{ji}\right)^{2}}{\epsilon_{i}^{2}}$$
(2)

where a_j is relative abundance of j^{th} element.

Preliminary results

Summar

Composition

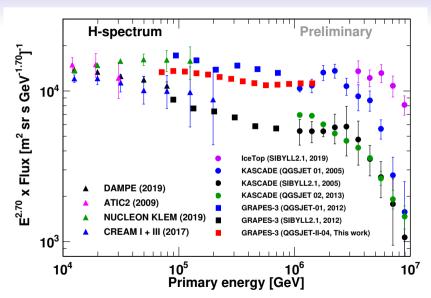

F. Varsi (GRAPES-3 collaboration)

composition and energy spectrum; ICRC 2021, Online, Berlin, Germany

Elemental spectrum

- Energy distribution of simulated primaries is studied for a given shower size bin.
- In the shower size range of interest (trigger efficiency > 90%), the energy distribution can be approximated to Gaussian on log scale.
- With the help of Gaussian random number generator, the distribution of energy is generated for a given shower size.
- The differential cosmic-ray spectrum (dI/dE) is obtained as follows:

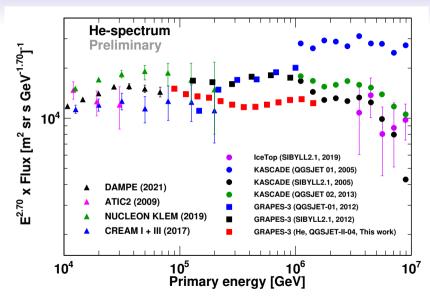
$$\frac{dI}{dE} = \frac{1}{T_{obs}} \left(\frac{N}{\Delta E.A} \right)_{i}$$
(3)



Introduction to GRAPES-3 experiment O

Selection quality cuts and data summary

Analysis 00000 Preliminary results


Summar

Introduction to GRAPES-3 experiment O Analysis

Preliminary results

Summar

- The trigger efficiency is >90% at 50 TeV, 55 TeV, 60 TeV, 80 TeV and 100 TeV for H, He, N, Al and Fe, respectively. The acceptance is increased to 2300 $m^2 sr$ at 100% efficiency for $\theta < 18^{\circ}$.
- Normalized MMD of each simulated primary is fitted with NBD. Relative abundance of each simulated primary is measured by minimizing the χ^2 of normalized MMD function of each simulated primary with normalized observed MMD using TMinuit package.
- The flux of proton spectrum is consistent with CREAM I + III and NUCLEON KLEM (within error) at lower energy and consistent with KASCADE (QGSJET-01) at higher energy.
- The Helium spectrum is also consistent with CREAM I + III and NUCLEON KLEM (within error) at lower energy.

Introduction	to	GRAPES-3	experiment
0			

Selection quality cuts and data summary

Analysis 00000 reliminary results

Summar

Date and time (Berlin) of ZOOM-Meeting : 13 July 2021-18:00. Thank you